【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169
思路
浙江省选果然不一般
用到一个从来没有听过的算法 悬线法:
所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵的最大值
那么我们定义3个数组
l[i][j]表示(i,j)能到达最左边的坐标
r[i][j]表示(i,j)能到达最右边的坐标
up[i][j]表示(i,j)能向上最大距离 即线的长度
那么状态转移方程得出:
l[i][j]=max(l[i][j],l[i-][j]);//满足条件的最大值为左边(因为要矩形)
r[i][j]=min(r[i][j],r[i-][j]);//满足条件的最小值为右边
up[i][j]=up[i-][j]+;//向上的距离与上一层有关
最后统计正方形和矩形(长方形)的最大面积
代码
#include<iostream>
using namespace std;
#define maxn 2020
int map[maxn][maxn],l[maxn][maxn],r[maxn][maxn],up[maxn][maxn];
int n,m,ans1,ans2;
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
cin>>map[i][j];
l[i][j]=r[i][j]=j;//初始化为自身
up[i][j]=;//初始为1
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)//推出左数组
if(map[i][j]!=map[i][j-]) l[i][j]=l[i][j-];
for(int i=;i<=n;i++)
for(int j=m-;j>=;j--)//推出右数组
if(map[i][j]!=map[i][j+]) r[i][j]=r[i][j+];
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(i>&&map[i][j]!=map[i-][j])//如果不在第一行
{
l[i][j]=max(l[i][j],l[i-][j]);//判断上面可以到达的最右边
r[i][j]=min(r[i][j],r[i-][j]);//判断上面可以到达的最左边
up[i][j]=up[i-][j]+;//长度+1
}
int a=r[i][j]-l[i][j]+;//此矩阵的横向长度
int b=min(a,up[i][j]);//正方形边长为横向长纵向长的最小值
ans1=max(ans1,b*b);//正方形
ans2=max(ans2,a*up[i][j]);//矩形
}
cout<<ans1<<endl<<ans2;
}
【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)的更多相关文章
- [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169 p4147 p2701 p1387 #include<cstdio> #include<algorithm& ...
- 洛谷P1169[ZJOI2007]棋盘制作
题目 一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题. 而这道题就是比较经典的可以用悬线法来处理的题. 而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然 ...
- BZOJ1057或洛谷1169 [ZJOI2007]棋盘制作
BZOJ原题链接 洛谷原题链接 设\(L[i][j],R[i][j],H[i][j]\)表示点\((i,j)\)向左.右.上尽量拓展的左端点.右端点.上端点的坐标. \(L,R\)直接初始化好,\(H ...
- 洛谷1169 [ZJOI2007] 棋盘制作
题目链接 题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形. 解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
随机推荐
- Ubuntu-16.04-Desktop +Hadoop2.7.5+Eclipse-Neon的云计算开发环境的搭建(伪分布式方式)
主控终端 主机名 ubuntuhadoop.smartmap.com IP 192.168.1.60 Subnet mask 255.255.255.0 Gateway 192.168.1.1 DNS ...
- ADB指令大全
Android Debug Bridge version 1.0.26.26 -a - directs adb to listen on all interfaces for a connection ...
- Navicat Premium 连接MySQL数据库出现Authentication plugin 'caching_sha2_password' cannot be loaded的解决方案
1. 管理员权限运行命令提示符,登陆MySQL mysql -u root -p root 2. 修改账户密码加密规则并更新用户密码 ALTER USER 'root'@'localhost' ID ...
- Oracle获取session的trace
1. 使用参数SQL_TRACE 下面是官网对此参数的说明 SQL_TRACE Property Description Parameter type Boolean Default value fa ...
- Python 连接Redis两中方式
一.通过django里设置settings文件连接redis #1.settings添加 CACHES = { "default": { "BACKEND": ...
- cmake 基本命令
1 # CMake 最低版本号要求cmake_minimum_required (VERSION 2.8) 2 项目信息project (Demo2) 3 aux_source_directory 查 ...
- python是如何找到对应的package的?
我们在写python代码或者阅读别人的代码时,可能会碰到对应module无法找到的问题,这时如何解决呢?我们如果对python解释器如何查找对应的module有比较深刻的理解,那么我们就可以轻松解决相 ...
- IPv4到IPv6的三种过渡技术
1. 双协议栈 ( Dual Stack, RFC2893 ) 主机同时运行IPv4和IPv6两套协议栈,同时支持两套协议. 2. 隧道技术 ( Tunnel, RFC2893 ) 这种机制用来在IP ...
- 为什么有时候NSData转换成NSString的时候返回nil
为什么有时候NSData转换成NSString的时候返回nil 有时候,NSData明明有值,可是,当转换成NSString的时候,却没有值,现在来进行测试:) -现在提供测试用素材- 源码如下: / ...
- 【数据结构】 顺序表查找(折半查找&&差值查找)
#include <stdio.h> #include <stdlib.h> #include <time.h> #define MAXSIZE 10 首先构造一个 ...