UOJ#34. 多项式乘法(NTT)
这是一道模板题。
给你两个多项式,请输出乘起来后的多项式。
输入格式
第一行两个整数 nn 和 mm,分别表示两个多项式的次数。
第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数。
第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数。
输出格式
一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数。
样例一
input
1 2
1 2
1 2 1
output
1 4 5 2
explanation
(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3。
限制与约定
0≤n,m≤1050≤n,m≤105,保证输入中的系数大于等于 00 且小于等于 99。
时间限制:1s1s
空间限制:256MB
震惊!
TLE一上午的原因竟然是素数和原根的定义没有加const!
NTT的板子题
把单位元换成原根就好
#include<cstdio>
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<21, stdin), p1 == p2) ? EOF : *p1++)
#define swap(x,y) x ^= y, y ^= x, x ^= y
#define LL long long
const int MAXN = * 1e6 + , P = , G = , Gi = ;
char buf[<<], *p1 = buf, *p2 = buf;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, limit = , L, r[MAXN];
LL a[MAXN], b[MAXN];
inline LL fastpow(LL a, LL k) {
LL base = ;
while(k) {
if(k & ) base = (base * a ) % P;
a = (a * a) % P;
k >>= ;
}
return base % P;
}
inline void NTT(LL *A, int type) {
for(int i = ; i < limit; i++)
if(i < r[i]) swap(A[i], A[r[i]]);
for(int mid = ; mid < limit; mid <<= ) {
LL Wn = fastpow( type == ? G : Gi , (P - ) / (mid << ));
for(int j = ; j < limit; j += (mid << )) {
LL w = ;
for(int k = ; k < mid; k++, w = (w * Wn) % P) {
int x = A[j + k], y = w * A[j + k + mid] % P;
A[j + k] = (x + y) % P,
A[j + k + mid] = (x - y + P) % P;
}
}
}
}
int main() {
N = read(); M = read();
for(int i = ; i <= N; i++) a[i] = (read() + P) % P;
for(int i = ; i <= M; i++) b[i] = (read() + P) % P;
while(limit <= N + M) limit <<= , L++;
for(int i = ; i < limit; i++) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
NTT(a, );NTT(b, );
for(int i = ; i < limit; i++) a[i] = (a[i] * b[i]) % P;
NTT(a, -);
LL inv = fastpow(limit, P - );
for(int i = ; i <= N + M; i++)
printf("%d ", (a[i] * inv) % P);
return ;
}
UOJ#34. 多项式乘法(NTT)的更多相关文章
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- ArcGIS10.3+Oracle12C+ArcGIS Server10.3安装布署(之二)
1.创建PDB 输入 dbca 命令 2.安装完成后,连接PDBSDE的容器数据库 3.环境变量 从Oracle的官方网站下载 instantclient-basic-nt-12.1.0.2.0. ...
- 深度研究Oracle数据库临时数据的处理方法
在Oracle数据库中进行排序.分组汇总.索引等到作时,会产生很多的临时数据.如有一张员工信息表,数据库中是安装记录建立的时间来保存的.如果用户查询时,使用Order BY排序语句指定按员工编号来排序 ...
- 如何选择分布式事务形态(TCC,SAGA,2PC,基于消息最终一致性等等)
各种形态的分布式事务 分布式事务有多种主流形态,包括: 基于消息实现的分布式事务 基于补偿实现的分布式事务 基于TCC实现的分布式事务 基于SAGA实现的分布式事务 基于2PC实现的分布式事务 这些形 ...
- oracle 分组取第一行数据 ,查询sql语句
oracle 分组取第一行数据 SELECT * FROM ( SELECT ROW_NUMBER() OVER(PARTITION BY x ORDER BY y DESC) rn, t.* FR ...
- linux 目录、文件名、logout、exit、shutdown、reboot、init 0、init 6、runlevel
/dev 设备目录/boot 系统启动目录/etc 配置文件保存目录/media./mnt./misc 挂载目录,实际可以自己随便定义一个目录作为挂载目录/opt 安装第三方软件位置,但现在 ...
- 软工读书笔记 week 7 ——《构建之法》
总时长近两周的结对项目终于算是结束了,马上要重新开启团队项目.于是这几天决定对<构建之法>一书中与团队项目及需求分析有关的章节进行重点阅读,希望能够从中得到启发,并运用到接下来的团队项目中 ...
- 将Excel的数据导入DataGridView中(转)
https://www.cnblogs.com/lhxhappy/archive/2008/11/26/1341873.html /// <summary> /// 点击按钮导入数据 // ...
- Prometheus Node_exporter 之 Basic CPU / Mem Graph
1. CPU Basic cpu 的基本信息 /proc/stat type: GraphUnit: shortBusy System: cpu 处于核心态的占比 metrics: sum by (i ...
- vim和xshell配色
xshell配色: http://www.hookr.cn/xshell-pei-se.html vim配色: 参考该文中的配置方法,包括设置256色等.http://www.cnblogs.com/ ...
- node环境和浏览器的区别
一.全局环境下this的指向 在node中this指向global而在浏览器中this指向window,这就是为什么underscore中一上来就定义了一 root: 1 var root = typ ...