【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916
第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑到$\mu$的定义,当i>1时必存在次数为偶数的质因子,故在数据范围内,$\sum_{i=1}^{n} { \mu (i^2)} $恒等于1。
第二个询问即求出$\sum_{i=1}^{n} { \varphi (i^2)} $,考虑到$\varphi$的定义,则有$\varphi(i^2)=i\times \varphi(i)$。
问题转化为求$\sum_{i=1}^{n} { i\times \varphi (i)} $
下面开始化简式子,考虑式子$n=\sum_{i|n}{\varphi (i)}$
通过简单变式,得:$n=\sum_{i|n\&i<n}{\varphi (i)}+\varphi (n)$
移项,得:$\varphi (n)=n-\sum_{i|n\&i<n}{\varphi (i)}$
通过之前推出的式子,得:$\mu(n^2)=n^2-n\times\sum_{i|n\&i<n}{\mu(i)}$
我们设$\Phi(n)=\sum_{i=1}^{n} { \varphi (i^2)}$
则:
$\Phi(n)=\sum_{i=1}^{n} (i^2-i \times \sum_{j|i\&j<i}\varphi(j))$
$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=1}^{n} i \times \sum_{j|i\&j<i}\varphi(j)$
$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n} i \times \sum_{j=1}^{\left \lfloor \frac{n}{i} \right \rfloor}\varphi(j)\times j$
$=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n} i \times \Phi(\left \lfloor \frac{n}{i} \right \rfloor)$
然后用杜教筛的思路+预处理1~19260817的$i\times \mu (i)$的前缀和即可
#include<bits/stdc++.h>
#define L long long
#define M 19260817
#define MOD 1000000007
#define inv6 166666668
using namespace std; int b[M]={},phi[M]={},use=; L pri[M]={};
void init(){
phi[]=;
for(int i=;i<M;i++){
if(!b[i]) pri[++use]=i,phi[i]=i-;
for(int j=;j<=use&&i*pri[j]<M;j++){
b[i*pri[j]]=;
if(i%pri[j]==) {phi[i*pri[j]]=phi[i]*pri[j]; break;}
phi[i*pri[j]]=phi[i]*(pri[j]-);
}
}
for(L i=;i<M;i++) phi[i]=(phi[i-]+phi[i]*i)%MOD;
} map<int,L> mp;
L solve(L n){
if(n<M) return phi[n];
if(mp[n]) return mp[n];
L pls=n*(n+)%MOD*(n<<|)%MOD*inv6%MOD,ans=;
for(L i=,j;i<=n;i=j+){
j=n/(n/i);
L sumi=((i+j)*(j-i+)/)%MOD;
ans=(ans+solve(n/i)%MOD*sumi)%MOD;
}
ans=(pls-ans+MOD)%MOD;
return mp[n]=ans;
} int main(){
init();
int n; scanf("%d",&n); printf("1\n");
printf("%lld\n",solve(n));
}
【BZOJ4916】神犇和蒟蒻 杜教筛的更多相关文章
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- XAMPP Apache + MariaDB + PHP + Perl
https://www.apachefriends.org/zh_cn/index.html 什么是XAMPP? XAMPP是最流行的PHP开发环境 XAMPP是完全免费且易于安装的Apache发行版 ...
- 在用easyui中做CRUD功能时,当删除一行或多行数据后再点击修改会提示你选中了多行,如何解决这个bug了?
在用easyui中做CRUD功能时,当删除一行或多行数据后再点击修改会提示你选中了多行,如何解决这个bug了? 在删除成功后,加上这句话就可以了:$("#dg").datagrid ...
- sqlserver将数据库的数据导成excel文档方法
sqlserver将数据库的数据导成excel文档方法 最近公司需要下载uniport的数据跟之前的数据进行对比,所以避免不了需要将数据库的数据导出来,把SQLServer表中的数据导出为Excel文 ...
- hdu-1067(最大独立集)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1068 题意:一个男生集合和一个女生集合,给出两个集合之间一一对应的关系,求出两个集合中最大独立集的点数 ...
- Linux必须学的东西,鉴于各大公司实际开发都不用Windows系统
Windows安全性比较差,所以各大公司会使用其他的平台,所以像Linux就是很常用的,基于Unix的开源系统,鉴于很多人写的很散,所以自己总结下对于自己有用的重点,现在总结下简单的linxu的命令使 ...
- UVa 11294 Wedding (TwoSat)
题意:有 n-1 对夫妻参加一个婚宴,所有人都坐在一个长长的餐桌左侧或者右侧,新郎和新娘面做面坐在桌子的两侧.由于新娘的头饰很复杂,她无法看到和她坐在同一侧餐桌的人,只能看到对面餐桌的人.任意一对夫妻 ...
- 4) Maven 安装
# ----------------------------------------------------------------------------# Maven2 Start Up Batc ...
- 201709011工作日记--ART与Dalvik&&静态类与非静态类
1.ART 与 Dalvik 的优缺点对比 什么是Dalvik:Dalvik是Google公司自己设计用于Android平台的Java虚拟机.dex格式是专为Dalvik应用设计的一种压缩格.Dalv ...
- Ubuntu在命令行开启远程桌面
在终端执行下列三个命令即可 gsettings set org.gnome.Vino enabled truegsettings set org.gnome.Vino prompt-enabled f ...
- 用VS2010编译python2.7的源码
1.下载python2.7的源码,解压缩如下目录 2. 网上有些教程说从PCbuild目录中进入,打开sln文件,但是我这样做是不能用vs2010打开的, 并且也尝试了用VS2013打开sln,但是是 ...