算法描述

在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现

我们现在来考虑这样一个问题:

我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗?

我们再回到普利姆算法的lazy实现,看一下这个问题:



当顺着顶点0的邻接表考察顶点7时,边7-2和边7-1被加入了优先队列Q.

然而,当我们开始对顶点2进行考察时:

边2-3是最轻边,我们显然不需要对边7-2和边7-1进行再次考察.

但是,由于边7-2和边7-1在对顶点2进行考察之前已经加入了优先队列Q,似乎我们对之前发生的事无可奈何,也必须让优先队列维护着这些不再候选的废边,从而加重了优先队列的负担,影响了效率.

结果是否真的如此?

如果我们仔细思考,会注意到我们可以采取这样的一个技巧去防止将废边加入优先队列:

我们关注的只是当前能看到的最轻边,所以边7-2和边7-1对我们来说只有这样的意义:

边7-2:到顶点2的距离是x;

边7-1:到顶点2的距离是y;

边3-2:到顶点2的距离是z.

z > xz >y.

所以我们既然无法避免在先于顶点2之前就将边7-2和边7-1当做废边(贪心算法),所以我们可以

采取更新的方式来在优先队列Q中维护到某个顶点的最短距离.

换句话说,我们对某个顶点,只在Q中维护一条边,就是当前已知连着它的最轻边.

由此,我们避免了将所有的边都加入优先队列Q,从而使得最差情况下Q的操作与图的顶点数V 成线性渐进:O(V ).

但一般的优先队列只提供了入队(enqueue)和出队(dequeue)操作,要更新到某个顶点的最短距离,我们需要高效地在优先队列中访问这个顶点.

那么按照一般优先队列的方式,比如jdk中的优先队列,它会是这样:

    private int indexOf(Object o) {
if (o != null) {
for (int i = 0; i < size; i++)
if (o.equals(queue[i]))
return i;
}
return -1;
}

这虽然可以帮助我们在队列中找到元素,但这显然不高效.

有没有一种办法可以按常量时间来找到所需元素?

答案是:索引(index),由此:

我们需要一个对顶点在队列中的索引.

这可以保证我们以常量的时间在队列中找到顶点.

关于索引式优先队列及实现可以参考:带索引的优先队列

实现分析

万事具备,那么我们对某顶点的邻接点(或邻接的边)的遍历和处理就会是这样:

    private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

算法一开始的时候,我们从源点v出发,将其加入队列Q,然后开始进行mst的建立工作:

    private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
}

完整实现

普利姆算法的完整eager实现如下,其中的一些类和字段不明白的

请参考:普利姆算法的lazy实现

/**
* Created by 浩然 on 4/21/15.
*/
public class EagerPrim extends LazyPrim {
protected WeightedEdge[] lastEdgeTo;
/**
* 索引式优先队列,用于维护crossing edges
* 用于在eager普利姆算法中高效返回最轻边并支持decrease-key操作
*/
protected IndexPriorityQueue<Double> indexCrossingEdges; public EagerPrim(WeightedUndirectedGraph g) {
super(g);
} @Override
protected void resetMemo() {
super.resetMemo();
lastEdgeTo = new WeightedEdge[g.vertexCount()];
//重置优先队列
indexCrossingEdges = new IndexPriorityQueue<>();
} private void setupMST() {
for (int v = 0; v < lastEdgeTo.length; v++) {
WeightedEdge we = lastEdgeTo[v];
if (we != null) {
mst.offer(we);
mstWeight += we.weight;
}
}
} /**
* eager-prim算法,时间复杂度为最差O(ElogV)
*/
@Override
public void performMST() {
resetMemo();
//对图中的所有顶点进行遍历,可以找出MSF(最小生成森林) //这里我们假设图是连通的,所以可以找出一棵MST
mst(0);
setupMST();
} private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
} private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

时间复杂度

由于避免了对废弃边的访问,所以在优先队列中最多维护V条记录.

优先队列的操作耗时O(logV ).

遍历所有边的操作耗时O(E ),则整体耗时O(ElogV)

最小生成树-普利姆算法eager实现的更多相关文章

  1. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  2. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  3. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  4. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  5. 普利姆算法(prim)

    普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...

  6. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  7. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  8. 算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索.本篇博客就在上一篇博客的基础上进行延伸,也是关于图的.今天博客中主要介绍两种算法,都是关于最小生 ...

  9. HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))

    继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. Python爬虫---requests库快速上手

    一.requests库简介 requests是Python的一个HTTP相关的库 requests安装: pip install requests 二.GET请求 import requests # ...

  2. xshell5 优化方案

    有道云笔记链接-> grep: 过滤 过滤的速度是最快的(相对于另外两个) -v -n -o   显示grep匹配到了什么 grep .  -o -i   --ignore-case -E == ...

  3. MySQL -- JDBC

    一 . JDBC的开发步骤 1.准备四大参数 2.注册驱动 3.获得连接 4.获得语句执行者 5.执行sql语句 6.处理结果 7.释放资源 1.准备四大参数 /* * jdbc四大配置参数 * &g ...

  4. c语言格式控制符

    http://zhidao.baidu.com/link?url=-YJjz3U0fd_eSW9eLa8ankGo_QbyOOOaKYWyAY9g4mKWQj0DN6l12OSLJz24U8jCwo1 ...

  5. 19 Error handling and Go go语言错误处理

    Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...

  6. Java线程的阻塞

    线程的阻塞 线程的优先级 线程总是存在优先级,优先级范围在1~10之间,线程默认优先级是5(数值越大优先级越高): JVM线程调度程序是基于优先级的抢先调度机制: 在大多数情况下,当前运行的线程优先级 ...

  7. CVE-2010-2553 Microsoft Windows Cinepak 编码解码器解压缩漏洞 分析

      Microsoft Windows是微软发布的非常流行的操作系统.         Microsoft Windows XP SP2和SP3,Windows Vista SP1和SP2,以及Win ...

  8. Sourcetree配置ssh密钥 - git图形化工具(二)

    这里主要介绍Sourcetree如何导入已经生成好的ssh私钥,如何生成ssh私钥自行百度. 如果Sourcetree没有配置ssh密钥,克隆时会提示如下错误: 仓库类型:这是一个无效的源路径/URL ...

  9. day7 面向对象进阶

    面向对象高级语法部分 通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法,什么是静态方法呢?其实不难理解,普通的方法,可以在实例化后直接调用,并且在方法里可以通过self.调用实例 ...

  10. ASP.NET MVC之验证终结者篇

    有时候我觉得,很多人将一个具体的技术细节写的那么复杂,我觉得没有必要,搞得很多人一头雾水的,你能教会别人用就成了,具体的细节可以去查MSDN什么的,套用爱因斯坦的名言:能在网上查到的就不要去记,用的时 ...