算法描述

在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现

我们现在来考虑这样一个问题:

我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗?

我们再回到普利姆算法的lazy实现,看一下这个问题:



当顺着顶点0的邻接表考察顶点7时,边7-2和边7-1被加入了优先队列Q.

然而,当我们开始对顶点2进行考察时:

边2-3是最轻边,我们显然不需要对边7-2和边7-1进行再次考察.

但是,由于边7-2和边7-1在对顶点2进行考察之前已经加入了优先队列Q,似乎我们对之前发生的事无可奈何,也必须让优先队列维护着这些不再候选的废边,从而加重了优先队列的负担,影响了效率.

结果是否真的如此?

如果我们仔细思考,会注意到我们可以采取这样的一个技巧去防止将废边加入优先队列:

我们关注的只是当前能看到的最轻边,所以边7-2和边7-1对我们来说只有这样的意义:

边7-2:到顶点2的距离是x;

边7-1:到顶点2的距离是y;

边3-2:到顶点2的距离是z.

z > xz >y.

所以我们既然无法避免在先于顶点2之前就将边7-2和边7-1当做废边(贪心算法),所以我们可以

采取更新的方式来在优先队列Q中维护到某个顶点的最短距离.

换句话说,我们对某个顶点,只在Q中维护一条边,就是当前已知连着它的最轻边.

由此,我们避免了将所有的边都加入优先队列Q,从而使得最差情况下Q的操作与图的顶点数V 成线性渐进:O(V ).

但一般的优先队列只提供了入队(enqueue)和出队(dequeue)操作,要更新到某个顶点的最短距离,我们需要高效地在优先队列中访问这个顶点.

那么按照一般优先队列的方式,比如jdk中的优先队列,它会是这样:

    private int indexOf(Object o) {
if (o != null) {
for (int i = 0; i < size; i++)
if (o.equals(queue[i]))
return i;
}
return -1;
}

这虽然可以帮助我们在队列中找到元素,但这显然不高效.

有没有一种办法可以按常量时间来找到所需元素?

答案是:索引(index),由此:

我们需要一个对顶点在队列中的索引.

这可以保证我们以常量的时间在队列中找到顶点.

关于索引式优先队列及实现可以参考:带索引的优先队列

实现分析

万事具备,那么我们对某顶点的邻接点(或邻接的边)的遍历和处理就会是这样:

    private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

算法一开始的时候,我们从源点v出发,将其加入队列Q,然后开始进行mst的建立工作:

    private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
}

完整实现

普利姆算法的完整eager实现如下,其中的一些类和字段不明白的

请参考:普利姆算法的lazy实现

/**
* Created by 浩然 on 4/21/15.
*/
public class EagerPrim extends LazyPrim {
protected WeightedEdge[] lastEdgeTo;
/**
* 索引式优先队列,用于维护crossing edges
* 用于在eager普利姆算法中高效返回最轻边并支持decrease-key操作
*/
protected IndexPriorityQueue<Double> indexCrossingEdges; public EagerPrim(WeightedUndirectedGraph g) {
super(g);
} @Override
protected void resetMemo() {
super.resetMemo();
lastEdgeTo = new WeightedEdge[g.vertexCount()];
//重置优先队列
indexCrossingEdges = new IndexPriorityQueue<>();
} private void setupMST() {
for (int v = 0; v < lastEdgeTo.length; v++) {
WeightedEdge we = lastEdgeTo[v];
if (we != null) {
mst.offer(we);
mstWeight += we.weight;
}
}
} /**
* eager-prim算法,时间复杂度为最差O(ElogV)
*/
@Override
public void performMST() {
resetMemo();
//对图中的所有顶点进行遍历,可以找出MSF(最小生成森林) //这里我们假设图是连通的,所以可以找出一棵MST
mst(0);
setupMST();
} private void mst(int v) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
distanceTo[v] = 0.0d;
q.offer(v, distanceTo[v]);
while (!q.isEmpty()) {
int src = q.poll();
search(src);
}
} private void search(int src) {
IndexPriorityQueue<Double> q = indexCrossingEdges;
visited[src] = true;
//遍历邻接的边
for(Edge edge:g.vertices()[src].Adj) {
WeightedEdge we = (WeightedEdge)edge;
int to = we.to;
if(visited[to])
continue;
//到顶点to的距离可以改善了
if(we.weight < distanceTo[to]) {
distanceTo[to] = we.weight;
lastEdgeTo[to] = we;
if(q.contains(to)) {
//我们在队列中只维护一条到某个顶点的距离
//在我们可以改善到这个顶点的距离是,我们更新它
q.decreaseKey(to, distanceTo[to]);
}else {
q.offer(to, distanceTo[to]);
}
}
}
}
}

时间复杂度

由于避免了对废弃边的访问,所以在优先队列中最多维护V条记录.

优先队列的操作耗时O(logV ).

遍历所有边的操作耗时O(E ),则整体耗时O(ElogV)

最小生成树-普利姆算法eager实现的更多相关文章

  1. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  2. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  3. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  4. POJ-2421-Constructing Roads(最小生成树 普利姆)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26694   Accepted: 11720 Description The ...

  5. 普利姆算法(prim)

    普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...

  6. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  7. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  8. 算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索.本篇博客就在上一篇博客的基础上进行延伸,也是关于图的.今天博客中主要介绍两种算法,都是关于最小生 ...

  9. HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))

    继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. PHP在引号前面添加反斜杠的原因及PHP去除反斜杠的办法

    昨天用PHP做了个读写html文档的小程序,本地测试正常但是传到网站后发现,提交内容保存的时候会自动在双引号前面增加一个反斜杠“\”,而且每保存一次增加一个反斜杠,很是郁闷. 当然做这个只是为了参加电 ...

  2. python网络编程-Select\Poll\Epoll异步IO

    首先列一下,sellect.poll.epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select ...

  3. 忘记SVN密码怎么办

    1:下载TSvnPwd.exe 2:使用wireshark抓包.例如: PROPFIND /svn/dev2/!svn/vcc/default HTTP/1.1Host: 192.168.156.1: ...

  4. HDU 1507 Uncle Tom's Inherited Land(最大匹配+分奇偶部分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1507 题目大意:给你一张n*m大小的图,可以将白色正方形凑成1*2的长方形,问你最多可以凑出几块,并输 ...

  5. 在 Python 中使用 GDB 来调试 转载

    2013/11/01 | Comments 大约一年前,我接触了 Java 中的 Btrace 能够不停机查看线上 JVM 运行情况的特性让我艳羡不已. 另外还有强悍的 jStack 和 jConso ...

  6. 20155225 实验一《Java开发环境的熟悉》实验报告

    20155225 实验一<Java开发环境的熟悉>实验报告 一.命令行下Java程序的开发 按照老师提供的步骤,运行程序如下: 二.IDEA下Java程序开发.调试 设置条件断点如下: 三 ...

  7. python类、类继承

    yield: 简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab( ...

  8. RabbitMQ介绍及安装部署

    本节内容: RabbitMQ介绍 RabbitMQ运行原理 RabbitMQ重要术语 三种ExchangeType RabbitMQ集群种类 集群基本概念 镜像模式部署集群 一.RabbitMQ介绍 ...

  9. 浅谈ABP最佳实践

    目录 ABP概念简述 ABP在[事务操作]上的简便性 ABP在[关联查询]上的“美”和“坑” ABP的[参数验证]方式 ABP概念简述 ABP是“ASP.NET Boilerplate Project ...

  10. USACO 4.2 Job Processing

    Job ProcessingIOI'96 A factory is running a production line that requires two operations to be perfo ...