在谈及TCP建立连接和释放连接过程,先来简单认识一下TCP报文段首部格式的的几个名词(这里只是简单说明,具体请查看相关教程)

序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。
确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。
确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效
同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。
终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

PS:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。

一、TCP建立连接三次握手

(1)、三次握手的过程

1)主机A向主机B发送TCP连接请求数据包,其中包含主机A的初始序列号seq(A)=x。(其中报文中同步标志位SYN=1,ACK=0,表示这是一个TCP连接请求数据报文;序号seq=x,表明传输数据时的第一个数据字节的序号是x)
   2)主机B收到请求后,会发回连接确认数据包。(其中确认报文段中,标识位SYN=1,ACK=1,表示这是一个TCP连接响应数据报文,并含主机B的初始序列号seq(B)=y,以及主机B对主机A初始序列号的确认号ack(B)=seq(A)+1=x+1)
   3)第三次,主机A收到主机B的确认报文后,还需作出确认,即发送一个序列号seq(A)=x+1;确认号为ack(A)=y+1的报文;

(2)为什么需要第三次握手?

还要再发送一次确认是为了,防止已失效的连接请求报文段突然又传到了B,因而产生错误。
     已失效的报文段:正常情况下:A发出连接请求,但因为丢失了,故而不能收到B的确认。于是A重新发出请求,然后收到确认,建立连接,数据传输完毕后,释放连接,A发了2个,一个丢掉,一个到达,没有“已失效的报文段”
但是,某种情况下,A的第一个在某个节点滞留了,延误到达,本来这是一个早已失效的报文段,但是在A发送第二个,并且得到B的回应,建立了连接以后,这个报文段竟然到达了,于是B就认为,A又发送了一个新的请求,于是发送确认报文段,同意建立连接,假若没有三次的握手,那么这个连接就建立起来了(有一个请求和一个回应),此时,A收到B的确认,但A知道自己并没有发送建立连接的请求,因为不会理睬B的这个确认,于是呢,A也不会发送任何数据,而B呢却以为新的连接建立了起来,一直等待A发送数据给自己,此时B的资源就被白白浪费了。但是采用三次握手的话,A就不发送确认,那么B由于收不到确认,也就知道并没有要求建立连接。

简而言之:第三次握手,主机A发送一次确认是为了防止:如果客户端迟迟没有收到服务器返回的确认报文,这时他会放弃连接,重新启动一条连接请求;但问题是:服务器不知客户端没收到,所以他会收到两个连接请求,白白浪费了一条连接开销。

二、TCP释放连接四次握手

(1)四次握手过程

  假设主机A为客户端,主机B为服务器,其释放TCP连接的过程如下:

1) 关闭客户端到服务器的连接:首先客户端A发送一个FIN,用来关闭客户到服务器的数据传送,然后等待服务器的确认。其中终止标志位FIN=1,序列号seq=u

2) 服务器收到这个FIN,它发回一个ACK,确认号ack为收到的序号加1。
  3) 关闭服务器到客户端的连接:也是发送一个FIN给客户端。
  4) 客户段收到FIN后,并发回一个ACK报文确认,并将确认序号seq设置为收到序号加1。

首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。


主机A发送FIN后,进入终止等待状态, 服务器B收到主机A连接释放报文段后,就立即给主机A发送确认,然后服务器B就进入close-wait状态,此时TCP服务器进程就通知高层应用进程,因而从A到B的连接就释放了。此时是“半关闭”状态。即A不可以发送给B,但是B可以发送给A。
  此时,若B没有数据报要发送给A了,其应用进程就通知TCP释放连接,然后发送给A连接释放报文段,并等待确认。A发送确认后,进入time-wait,注意,此时TCP连接还没有释放掉,然后经过时间等待计时器设置的2MSL后,A才进入到close状态。

(2)为什么要等待2MSL呢?
    MSL即Maximum Segment Lifetime,也就是最大报文生存时间,他是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。引用《TCP/IP详解》中的话:“它(MSL)是任何报文段被丢弃前在网络内的最长时间”。RFC 793中规定MSL为2分钟,实际应用中常用的是30秒,1分钟和2分钟等。

TCP的TIME_WAIT状态需要等待2MSL,当TCP的一端发起主动关闭,在发出最后一个ACK包后,即第3次握手完成后发送了第四次握手的ACK包后就进入了TIME_WAIT状态,必须在此状态上停留两倍的MSL时间,等待2MSL时间主要目的是怕最后一个ACK包对方没收到,那么对方在超时后将重发第三次握手的FIN包,主动关闭端接到重发的FIN包后可以再发一个ACK应答包。在TIME_WAIT状态时两端的端口不能使用,要等到2MSL时间结束才可继续使用。当连接处于2MSL等待阶段时任何迟到的报文段都将被丢弃。不过在实际应用中可以通过设置SO_REUSEADDR选项达到不必等待2MSL时间结束再使用此端口。

概括原因如下:

①、为了保证A发送的最后一个ACK报文段能够到达B。即最后这个确认报文段很有可能丢失,那么B会超时重传,然后A再一次确认,同时启动2MSL计时器,如此下去。如果没有等待时间,发送完确认报文段就立即释放连接的话,B就无法重传了(连接已被释放,任何数据都不能出传了),因而也就收不到确认,就无法按照步骤进入CLOSE状态,即必须收到确认才能close。
    ②、防止“已失效的连接请求报文段”出现在连接中。经过2MSL,那些在这个连接持续的时间内,产生的所有报文段就可以都从网络中消失。即在这个连接释放的过程中会有一些无效的报文段滞留在楼阁结点,但是呢,经过2MSL这些无效报文段就肯定可以发送到目的地,不会滞留在网络中。这样的话,在下一个连接中就不会出现上一个连接遗留下来的请求报文段了。
可以看出:B结束TCP连接的时间比A早一点,因为B收到确认就断开连接了,而A还得等待2MSL.

(3)为什么TCP释放连接需要四次?

TCP建立连接要进行三次握手,而断开连接要进行四次。这是由于TCP的半关闭造成的。因为TCP连接是全双工的(即数据可在两个方向上同时传递)所以进行关闭时每个方向上都要单独进行关闭。这个单方向的关闭就叫半关闭。当一方完成它的数据发送任务,就发送一个FIN来向另一方通告将要终止这个方向的连接。

   注意:

1)发送了FIN只是表示这端不能继续发送数据(应用层不能再调用send发送),但是还可以接收数据。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据,比如:如主机A收到主机B的FIN断开TCP连接请求,只是表示主机B已经发送完数据,主机A收到FIN后作出应答,并终止这个方向的数据传输,此时处于半关闭状态。但是主机A仍然可以发送数据的,只有当主机A发送完数据并发送FIN给主机B时,主机B才停止这个方向的数据传输,并关闭TCP连接。

2)在很多时候,TCP连接的断开都会由TCP层自动进行,例如你CTRL+C终止你的程序,TCP连接依然会正常关闭,你可以写代码试试。

参考资料:

《TCP协议三次握手连接四次握手断开和DOS攻击》http://blog.csdn.net/fw0124/article/details/7452695

转自:http://blog.csdn.net/guyuealian/article/details/52535294

作者:guyuealian

【转】TCP建立连接三次握手和释放连接四次握手的更多相关文章

  1. TCP建立连接三次握手和释放连接四次握手

    TCP建立连接三次握手和释放连接四次握手     [转载]http://blog.csdn.net/guyuealian/article/details/52535294   在谈及TCP建立连接和释 ...

  2. 通俗易懂地讲解TCP建立连接的三次握手和释放连接的四次挥手

    TCP建立连接时,为什么要进行三次挥手? 每一次TCP连接都需要三个阶段:连接建立.数据传送和连接释放.三次握手就发生在连接建立阶段. 在谢希仁著<计算机网络>第四版中讲三次握手的目的是为 ...

  3. TCP建立连接的三次握手和释放连接的四次挥手

    TCP建立连接时,为什么要进行三次握手? 举个打电话的例子: A : 你好我是A,你听得到我在说话吗 B : 听到了,我是B,你听到我在说话吗 A : 嗯,听到了 建立连接,开始聊天! 第一次握手 第 ...

  4. TCP三次握手及释放连接详解(转)

    一.TCP头部简介 ACK :即确认字符,在数据通信中,接收站发给发送站的一种传输类控制字符.表示发来的数据已确认接收无误.TCP报文格式中的控制位由6个标志比特构成,其中一个就是ACK,ACK为1表 ...

  5. 什么是RST包,什么是三次握手,什么是四次握手 ---请进

    一.RST包.本人学习后总结:RST包用于强制关闭TCP链接. TCP连接关闭的正常方法是四次握手.但四次握手不是关闭TCP连接的唯一方法. 有时,如果主机需要尽快关闭连接(或连接超时,端口或主机不可 ...

  6. Python--day41--事件和信号量之模拟连接数据库并在连接三次后抛出连接超时异常

    #事件被创建的时候#False状态 #wait()阻塞#True状态 #wait() 非阻塞#clear 设置状态为False#set 设置状态为True #数据库 --- 文件夹#文件夹里有好多ex ...

  7. TCP:三次握手、四次握手、backlog及其他

    TCP是什么 首先看一下OSI七层模型: 然后数据从应用层发下来,会在每一层都加上头部信息进行封装,然后再发送到数据接收端,这个基本的流程中每个数据都会经过数据的封装和解封的过程,流程如下图所示: 在 ...

  8. TCP建立连接和释放连接过程

    TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议.TCP建立连接需要三次握手,释放连接需要四次握手. 1.TCP整 ...

  9. 三次握手、四次握手、backlog

    TCP:三次握手.四次握手.backlog及其他   TCP是什么 首先看一下OSI七层模型: 然后数据从应用层发下来,会在每一层都加上头部信息进行封装,然后再发送到数据接收端,这个基本的流程中每个数 ...

随机推荐

  1. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  2. a标签伪元素选择器

    a{ color: black; } /*未访问的链接*/ a:link{ color: red; } /*访问过的链接*/ a:visited{ color: green; } /*鼠标经过时*/ ...

  3. Java并发编程原理与实战二十三:Condition原理分析

    先来回顾一下java中的等待/通知机制 我们有时会遇到这样的场景:线程A执行到某个点的时候,因为某个条件condition不满足,需要线程A暂停:等到线程B修改了条件condition,使condit ...

  4. 谈谈Flash图表中数据的采集

    一般来说flash中的数据是不能被现有技术很容易采集到的,但是也不能谈flash色变,要具体问题具体分析,有些flash是可以通过一些分析发现背后的数据.然后采集就变得很容易了. 具体案例:搜房房价走 ...

  5. 读懂复杂C声明的黄金法则

    在网上遇见felix,他让我读 http://www.felix021.com/blog/read.php?2072,读完之后觉得收获很大,需要练习一下. 黄金法则:从声明的变量开始,先向右看,再向左 ...

  6. windebug分析高cpu问题

    分析高CPU的关键是找到哪个线程是持续运行,占用CPU时间. 可以隔上两分钟连续抓两个dump文件,使用 !runaway 查看线程运行的时间 通过对比两个dump文件的线程时间,看看哪个线程运行的时 ...

  7. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  8. Ubuntu下 git 服务器的搭建【转】

    转自:http://www.open-open.com/lib/view/open1391477731082.html 搭建git服务器的4个步骤 1   配置服务器前的准备工作 首先ubuntu系统 ...

  9. MySQL5.7之多源复制&Nginx中间件(上)【转】

    有生之年系列----MySQL5.7之多源复制&Nginx中间件(上)-wangwenan6-ITPUB博客http://blog.itpub.net/29510932/viewspace-1 ...

  10. java 读取配置文件类

    import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; im ...