GreenPlum学习笔记:create table创建表
二维表同样是GP中重要的存储数据对象,为了更好的支持数据仓库海量数据的访问,GP的表可以分成:
- 面向行存储的普通堆积表
- 面向列存储的AOT表(append only table)
当然AOT表也可以是按行存储的,但是按列存储必须是AOT表。这样,我们在设计应用上可以获得相当的灵活性。比如经常需要更新的数据,或者较小的维度数据,应该使用普通堆积表存储。
例子:
create table tmp_001(
month_id numeric(8),
serv_id numeric(30),
cust_id numeric(30)
)
with (
appendonly=true, compresslevel=5, orientation=column,
compresstype=zlib, oids=false
)
distributed by (month_id,serv_id)
1.分布键(哈希键)
- distributed by (a) 指定a字段为分布键
- distributer randomly 随机分布
注意:
- 未指定分布键,默认表的主键为分布键,若表没有主键,则默认把第一列当作哈希键
- 分布键可以被定义为一个或多个
- 分布键必须是唯一键
- 不能修改分布键,且哈希键的列不能update
- 一个表只能定义一个唯一键,且主键和唯一键必须作为哈希键
- 数值重复度低,保证数据均匀分布
- 防止数据倾斜,布尔值不适合,float、double数据类型也不适合,interger、varchar比较好
- 大表经常做连接时,选择相同的分布键,避免跨节点进行join
- 尽量不用序列号,无意义
2.AOT 指定按列分布
- appendonly=true 指定是否只append追加
- compresslevel=5 zlib压缩级别 1-9共9个级别 9压缩最大
- orientation=column 指定是否按列存储
- compresstype=zlib GP提供两种压缩算法:zlib和quicklz
- oids=false 对象标识符 不分配
3.其他注意
与其它数据库相比,GP的表最大的不同是它一定是分区的,也就是表中的所有记录都会依据相关算法打散,分布到所有的segment当中,从而在充分利用硬件资源的同时,最大化访问数据的IO,这种特性对于数据仓库应用是非常有帮助的。
GP提供两种打散数据的算法,一种是Hash算法:distributed by (serv_id),在定义表的时候,通过distributed by指定表中的某个列或者某个列的组合作为Hash键,相同Hash键的记录会放在同一个segment当中。所以,GP建议一般选择记录分布均匀的键作为Hash键使用,从而保证表中的记录可以均匀分布到所有segment上。如果表上定义了主键或者唯一键,则这些键值列必须作前导列出现在分布键当中,并且放在第一位。
如果定义表的时候,没有指定distributed子句,系统使用第一个列作为Hash键使用。
另一种数据打散的算法是平均分配法(ROUND-ROBIN),distributed randomly, 假设有三个段,那么这种算法会把第一条记录放在段1, 第二条记录放在段2,第三条记录放在段3,第四条记录放在段1,以此类推,直到所有记录发放完为止。这种算法比较适合表中的字段存在严重数据倾斜的情况。
在数据仓库中,对于存储海量少变化历史数据的事实表的访问,会产生大量IO。这些表除了记录多外(纵向),同时也很宽。比如几十列,甚至上百列的表也很常见。但是在进行数据分析和挖掘过程中,我们可能只用到这些列的很小一部分内容,而传统的按行存储的表,在访问时总是会访问记录中的所有列,导致很多无效IO,当由于表横向尺寸过大,按行存储的表还会出现行链接,这会使无效IO的问题更严重。在GP中,对于这种情况应该考虑使用面向列存储的AOT表,从而大幅高IO效率,获取数据查询性能的收益。
现在硬件系统往往IO效率跟不上CPU处理的速度,而数据仓库应用恰恰是IO敏感型的应用,所以很多数据仓库系统上,会看到CPU很闲,但是出现大量IO等待的情况。所以通过压缩,尤其是面向列压缩,允许我们牺牲一定的CPU效率进一步换取IO效率,提高系统的的吞吐量。
GP的AOT表允许使用两种压缩算法,一种是ZLIB,它的压缩率较高,对CPU的消耗较多,GP中可以指定1到9共9个级别。1的压缩比最小,9最大。另一种算法是QUICKLZ,它的压缩比小,能设置1,造成的CPU负载也比ZLIB小。
AOT表虽然查询和加载数据的效率很高,但是如它的名字那样它只能支持select,insert,truncate操作,不支持update和delete操作。所以它只适合存放经过处理基本最终无变化的历史数据,用来提供高效的查询访问。
从数据数据存放的生命周期看,前面介绍的表都称之为永久表,这些表的记录不会因为事务的结束和会话的断开而消失。而业务中,我们经常要使用到临时数据集合,如果用永久表存放中间结果,一方面是在并发环境中数据不安全,另一方面频繁的删除表中的记录或者删除表,会导致大量碎片,在字典层面造成瓶颈。因此GP也支持临时表,不同连接共享相同的表结构。比如下面的例子:
CREATE TEMP TABLE SALES_TMP
(PROD_ID numeric NOT NULL ,
CUST_ID numeric NOT NULL ,
TIME_ID DATE NOT NULL ,
CHANNEL_ID numeric NOT NULL ,
PROMO_ID numeric NOT NULL ,
QUANTITY_SOLD numeric(10,2) NOT NULL ,
AMOUNT_SOLD numeric(10,2) NOT NULL)
on commit preserve rows
distributed randomly;
CREATE TEMP TABLE SALES
(PROD_ID numeric NOT NULL ,
CUST_ID numeric NOT NULL ,
TIME_ID DATE NOT NULL ,
CHANNEL_ID numeric NOT NULL ,
PROMO_ID numeric NOT NULL ,
QUANTITY_SOLD numeric(10,2) NOT NULL ,
AMOUNT_SOLD numeric(10,2) NOT NULL)
on commit delete rows
distributed by (prod_id,cust_id,time_id,channel_id,promo_id);
例子一是事务内有效,连接会话间数据独立。完成事务后数据保留,只有连接会话断开后数据才消失。
例子二是事务内有效,也就是提交事务后(commit)数据就会消失。
如果临时表的名字与永久表名字重复,临时表的访问优先。
除了普通表以外,GP还支持超大表进行分区应用,为我们的提高数据访问效率的同时,也提高应用的灵活型。它可以支持RANGE分区,LIST分区,以及灵活的复合分区(RANGE-LIST,RANGE-RANGE,LIST-RANGE,LIST-LIST,以及更多层次的分区,比如三层分区),GP的分区是基于segment基础之上的。每个分区的数据同样会打散分布到每个segment中,当where条件上出现分区键时,它会进行分区裁剪,减少IO。需要注意的是,目前GreenPlum还只支持静态分区裁剪,所以如果希望用到分区裁剪,请在Where条件中使用事实表的分区键作为条件。
END 2018-08-01 18:17:13
GreenPlum学习笔记:create table创建表的更多相关文章
- MySQL Create Table创建表
表的创建命令需要: 表的名称 字段名称 定义每个字段(类型.长度等) 语法 下面是通用的SQL语法用来创建MySQL表: CREATE TABLE table_name (column_name co ...
- Oracle学习笔记_05_ 一个创建表空间、创建用户、授权的完整过程
一.完整命令 su - oracle sqlplus /nolog conn /as sysdba create tablespace scaninvoice logging datafile '/u ...
- EF CodeFirst学习笔记003--如何创建表
参考: http://www.cnblogs.com/Wayou/archive/2012/09/20/EF_CodeFirst.html webconfig中修改: <connectionSt ...
- php大力力 [023节]CREATE TABLE创建新表sql写字段备注(2015-08-27)
2015-08-27 php大力力023.CREATE TABLE创建新表sql写字段备注 http://www.cnblogs.com/dalitongxue/p/4762182.html 参考: ...
- Django学习笔记(五)—— 表单
疯狂的暑假学习之 Django学习笔记(五)-- 表单 參考:<The Django Book> 第7章 1. HttpRequest对象的信息 request.path ...
- MySQL学习笔记2(多表操作)
外键:使两张表之间存在关联 特点: 1.从表外键的值是对主表主键的引用 2.从表外键类型,必须与主表主键类型一致 示例: 创建两个表并准备数据: USE mybase; CREATE TABLE ca ...
- InterSystems Ensemble学习笔记(二) Ensemble创建镜像, 实现自动故障转移
系列目录 InterSystems Ensemble学习笔记(一) Ensemble介绍及安装InterSystems Ensemble学习笔记(二) Ensemble创建镜像, 实现自动故障转移 一 ...
- 【opencv学习笔记八】创建TrackBar轨迹条
createTrackbar这个函数我们以后会经常用到,它创建一个可以调整数值的轨迹条,并将轨迹条附加到指定的窗口上,使用起来很方便.首先大家要记住,它往往会和一个回调函数配合起来使用.先看下他的函数 ...
- Flutter学习笔记(13)--表单组件
如需转载,请注明出处:Flutter学习笔记(13)--表单组件 表单组件是个包含表单元素的区域,表单元素允许用户输入内容,比如:文本区域,下拉表单,单选框.复选框等,常见的应用场景有:登陆.注册.输 ...
随机推荐
- UVAL 7902 2016ECfinal F - Mr. Panda and Fantastic Beasts
题意: 给出n个串,求一个最短的第一个串的子串使它不在其他的n-1个串中出现,若有多个求字典序最小的. Limits: • 1 ≤ T ≤ 42. • 2 ≤ N ≤ 50000. • N ≤ S1 ...
- RCNN,fast R-CNN,faster R-CNN
转自:https://www.cnblogs.com/skyfsm/p/6806246.html object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别. ...
- 应用jfinal发送微信模板消息的一个bug
严格来讲,这不是一个bug,只是我们应用的方式不对.微信发送模板消息的方法是: HttpUtils.post(sendApiUrl + AccessTokenApi.getAccessTokenStr ...
- jubeeeeeat
http://cdqz.openjudge.cn/2016/0003/ 总时间限制: 1000ms 内存限制: 256000kB 描述 众所周知,LZF很喜欢打一个叫Jubeat的游戏.这是个音乐游戏 ...
- 容斥 或者 单调栈 hihocoder #1476 : 矩形计数 和 G. Snake Rana 2017 ACM Arabella Collegiate Programming Contest
先说一个简单的题目(题目大意自己看去,反正中文):hihocoder上的:http://hihocoder.com/problemset/problem/1476 然后因为这个n和m的矩阵范围是100 ...
- Android Dalvik和JVM的区别
JVM运行的Java字节码,它从.class文件或Jar包中加载字节码然后执行: Dalvik 运行的是 dex 文件(Dalvik Executable),生成APK时,Dx工具把所有.class文 ...
- 2016-2017-20155329 《Java程序设计》第5周学习总结
学号 2016-2017-20155329 <Java程序设计>第5周学习总结 教材学习内容总结 Java中所有错误都会被打包为对象,运用try.catch,可以在错误发生时显示友好的错误 ...
- caffe的特殊层
每次写博客都带有一定的目的,在我看来这是一个记录的过程,所以尽量按照循序渐进的顺序逐步写,前面介绍的CNN层应该是非常常用的,这篇博客介绍一下某些特殊的layer,但是由于特殊的layer都带有一定的 ...
- 【译】SSH隧道:本地和远程端口转发
本文是:SSH Tunnel - Local and Remote Port Forwarding Explained With Examples 的译文 有两种方法可以创建SSH隧道,本地和远程端口 ...
- 24、List三个子类的特点
List的三个子类的特点 因为三个类都实现了List接口,所以里面的方法都差不多,那这三个类都有什么特点呢? ArrayList:底层数据结构是数组,查询快,增删慢.线程不安全,效率高. Vector ...