不多说,直接上干货!

  最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU)

Deep Sparse Rectifier Neural Networks 
ReLu(Rectified Linear Units)
修正线性单元(Rectified linear unit,ReLU) 
激活函数实现–4 Rectified linear函数实现Rectified Linear Units

ReLU 和sigmoid 函数对比

ReLU为什么比Sigmoid效果好

  在CNN卷积神经网络中,习惯用ReLU函数代替sigmoid, tahh等目标激活函数,这应该是因为,RELU函数在大于0的时候,导数为恒定值,而sigmoid和tahh函数则不是恒定值,相反,sigmoid和tahh的导数,类似于高斯函数的曲线形状,在两端接近目标时,导数变小。

  导数小的话,在训练神经网络的时候,会BP反向传播误差,导致收敛减慢;而ReLU函数则避免了这点,很好很强大。

  当然,事情不是一定的,还是得结合实际情况选择,或者涉及目标激活函数。

附:双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦"sinh",双曲余弦"cosh",从它们导出双曲正切"tanh"

                    

sigmod函数:

                

Relu函数:

   

         

综合:

        

@作者:约翰曰不约 
为什么通常Relu比sigmoid和tanh强,有什么不同?
  主要是因为它们gradient特性不同。sigmoid和tanh的gradient在饱和区域非常平缓,接近于0,很容易造成vanishing gradient的问题,减缓收敛速度。vanishing gradient在网络层数多的时候尤其明显,是加深网络结构的主要障碍之一。相反,Relu的gradient大多数情况下是常数,有助于解决深层网络的收敛问题。Relu的另一个优势是在生物上的合理性,它是单边的,相比sigmoid和tanh,更符合生物神经元的特征。
  而提出sigmoid和tanh,主要是因为它们全程可导。还有表达区间问题,sigmoid和tanh区间是0到1,或着-1到1,在表达上,尤其是输出层的表达上有优势。
 
@作者:crackhopper,
  ReLU更容易学习优化。因为其分段线性性质,导致其前传,后传,求导都是分段线性。而传统的sigmoid函数,由于两端饱和,在传播过程中容易丢弃信息:
@作者:Begin Again

  第一个问题:为什么引入非线性激励函数?
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
  正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。
  第二个问题:为什么引入Relu呢?
  第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
  第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,参见 @Haofeng Li 答案的第三点),从而无法完成深层网络的训练。
  第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。

  当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进,具体的大家可以找相关的paper看。
  多加一句,现在主流的做法,会在做完relu之后,加一步batch normalization,尽可能保证每一层网络的输入具有相同的分布[1]。而最新的paper[2],他们在加入bypass connection之后,发现改变batch normalization的位置会有更好的效果。大家有兴趣可以看下。

 
 
 

ReLu(修正线性单元)、sigmoid和tahh的比较的更多相关文章

  1. 修正线性单元(Rectified linear unit,ReLU)

    修正线性单元(Rectified linear unit,ReLU) Rectified linear unit 在神经网络中,常用到的激活函数有sigmoid函数f(x)=11+exp(−x).双曲 ...

  2. 感知机和线性单元的C#版本

    本文的原版Python代码参考了以下文章: 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 在机器学习如火如荼的时代,Python大行其道,几乎所有的机器学习的 ...

  3. 用线性单元(LinearUnit)实现工资预测的Python3代码

    功能:通过样本进行训练,让线性单元自己找到(这就是所谓机器学习)工资计算的规律,然后用两组数据进行测试机器是否真的get到了其中的规律. 原文链接在文尾,文章中的代码为了演示起见,仅根据工作年限来预测 ...

  4. (2)Deep Learning之线性单元和梯度下降

    往期回顾 在上一篇文章中,我们已经学会了编写一个简单的感知器,并用它来实现一个线性分类器.你应该还记得用来训练感知器的『感知器规则』.然而,我们并没有关心这个规则是怎么得到的.本文通过介绍另外一种『感 ...

  5. 关于逻辑回归是否线性?sigmoid

    from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线 ...

  6. [PyTorch 学习笔记] 3.3 池化层、线性层和激活函数层

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍 ...

  7. [DeeplearningAI笔记]神经网络与深度学习3.2_3.11(激活函数)浅层神经网络

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为 ...

  8. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  9. Deep Learning基础--26种神经网络激活函数可视化

    在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...

随机推荐

  1. 【亲测可行】Dev c++调试、运行报错解决方法总结

    一.编译后  0错误 0警告,但是开始出现‘‘停止运行’’或者进行输入时出现‘‘停止运行’’ 可能的原因: 结构体指针为空,但调用了其成员. 有些scanf语句中忘记添加取址符. 无法跳出递归. 二. ...

  2. 7. 配置undo表空间

    7. 配置undo表空间 undo日志可以存储在一个或多个undo表空间中,无需存储在系统表空间中. 要为MySQL实例配置单独的undo表空间,请执行以下步骤 [重要]: 只能在初始化新MySQL实 ...

  3. tomcat7使用dbcp连接池遇到的坑

    项目部署在tomcat后每隔一段时间便会报错 Cause: java.sql.SQLException: Could not retrieve transation read-only status ...

  4. POJ 3258 River Hopscotch (二分法)

    Description Every year the cows hold an event featuring a peculiar version of hopscotch that involve ...

  5. 关于自由拖拽完成的剪切区域(UI组件之图片剪切器)

    var x, y,areaWidth,areaHeight; var down;//闪光的判断标准,很好 addEvent(canvas,'mousedown',function(e){ // con ...

  6. prototype 和function关系等总结

    js提供了一些内置类,如Array String Function等,只要有类就有原型. 1,function ,属性包括 arguments, caller,length,name ,prototy ...

  7. HDU1272 迷宫通路数

    Problem Description 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该 ...

  8. BZOJ 1509[NOI 2003]逃学的小孩 树形dp

    1509: [NOI2003]逃学的小孩 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 995  Solved: 505[Submit][Status][ ...

  9. jascript的this

    一,this基础 1. 虽然在jascript中一切都是对象,即函数也是一个对象,但在函数中的this并不是指函数本身. 2. 函数中的this指向不是在函数定义时确定的,而是在函数调用时确定的. 3 ...

  10. excludepathpatterns 无效

    踩坑了,调了好久才调出来. 原因:  访问的API /XXX 已经转换为 /error 了.  把“/error” 也加入 excludepathpatterns 里面即可.