Cake(凸包+区间DP)
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.
The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.
NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.
Input
There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers, N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following N lines contains two integers, x and y(-10000 ≤ x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.
Output
If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.
Sample Input
3 3
0 0
1 1
0 2
Sample Output
0
题目大意:
给定若干个点,若围成的不是凸包,则输出"I can't cut.",反之,把该图形分割成若干个三角,每条分割线不相交,每次分割需要花费
|xi+xj|*|yi+yj|%p,求最小花费.
#include <bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int dp[][],sum[][];
struct point
{
int x,y;
}p[];
int cross(point a,point b,point c)///叉积
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
bool cmp(point a,point b)///极角排序
{
if(cross(p[],a,b)>) return ;
return ;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
int pos=;
for(int i=;i<n;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
if(p[pos].y>p[i].y||p[pos].y==p[i].y&&p[pos].x>p[i].x)///找最左下的点
pos=i;
}
int flag=;
swap(p[pos],p[]);
sort(p+,p+n,cmp);
int cnt=;
for(int i=;i<n;i++)
if(cross(p[i-],p[i-],p[i])<)
{flag=;break;}
if(!flag) printf("I can't cut.\n");
else
{
memset(sum,,sizeof sum);
for(int i=;i<n;i++)///预处理cost
for(int j=i+;j<n;j++)
{
if(i==&&j==n-) continue;
sum[i][j]=sum[j][i]=(abs(p[i].x+p[j].x)*abs(p[i].y+p[j].y))%m;
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(int i=n-;i>=;i--)
for(int j=i+;j<n;j++)
for(int k=i+;k<j;k++)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+sum[i][k]+sum[k][j]);
printf("%d\n",dp[][n-]);
}
}
return ;
}
Cake(凸包+区间DP)的更多相关文章
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- HDU 6603 Azshara's deep sea(凸包+区间DP)
由于题目要求,首先维护出一个凸包,然后在凸包上寻找点对关系,用rel[i][j]表示i点和j点之间是否可以连线,又由于维护出来的凸包上的点的个数不多,可以直接枚举点对并枚举所有圆,判断两点直线和圆是否 ...
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- 区间DP小结
也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
随机推荐
- 区间dp实战练习
题解报告:poj 2955 Brackets(括号匹配) Description We give the following inductive definition of a “regular br ...
- SPRING-BOOT系列之Spring4深入分析
上篇 : SPRING-BOOT系列之Spring4快速入门 1. 假如我们有这样一个场景,在一个组件中想获取到容器对象,那么我们也可以使用Autowired来完成装配.那么我们还可以让类集成一个接口 ...
- LVS实现负载均衡
三台主机模拟 sishen_63(分发器): eth0(Bridge):192.168.1.63 eth1(vmnet4):192.168.2.63 sishen_64(RealServer1): e ...
- elasticsearch6安装head插件
1.head 插件Github地址:https://github.com/mobz/elasticsearch-head 2.npm install 3.npm run start 由于head插件监 ...
- AJPFX关于一维数组的声明与初始化
一维数组:可以理解为一列多行.类型相同的数据,其中每个数据被称为数组元素:一维数组的声明方式: type varName[]; 或 type[] varName;(推荐) ...
- css3 blur模糊解决ie6-ie9兼容
css3 blur模糊是css3的新特性,但是不兼容ie6-ie9,以下代码可以解决此问题: filter: progid:DXImageTransform.Microsoft.Blur(Pixel ...
- 关于获取计算机唯一ID问题
1:CPU序列号,并不是每颗CPU都有一个唯一的序列号,CPU试每种型号一个序列号,其实可以认为是CPU型号号码.PIII以前的计算机没有ID,而且AMD的CPU也没有ID. 创建一个虚拟机,他会重新 ...
- Python学习日记之Python函数及方法使用总结
1. DocStrings 文档字符串 可以直接输出位于函数内定义的说明 # -*- coding:utf-8 -*- def printMax(x, y): '''示例: 说明文档''' ...
- 复位电路设计——利用PLL锁定信号(lock)产生复位信号
利用PLL锁定信号(lock)产生复位信号 在FPGA刚上电的时候,系统所需的时钟一般都要经过PLL倍频,在时钟锁定(即稳定输出)以前,整个系统应处于复位状态.因此,我们可以利用PLL的锁定信号来产生 ...
- sql语句分为三类(DML,DDL,DCL)-介绍
本文知识来源自:<Oracle专家高级编程> 分享作者:Vashon 时间:20150415 DDL is Data Definition Language statements. Som ...