题意:求n个点带编号生成树的不同加边序列个数

n<=10^6

思路:

WJMZBMR:额。首先他们打架的关系是一颗无根树,就有n^(n-2)种情况,还有打架的顺序,是(n-1)!种,乘起来就可以了囧。。

 const mo=;
var n,k,i:longint;
ans,y:int64;
begin
assign(input,'bzoj1430.in'); reset(input);
assign(output,'bzoj1430.out'); rewrite(output);
readln(n);
k:=n-; y:=n;
ans:=;
while k> do
begin
if k and = then ans:=ans*y mod mo;
y:=y*y mod mo;
k:=k>>;
end;
for i:= to n- do ans:=ans*i mod mo;
writeln(ans);
close(input);
close(output);
end.

【BZOJ1430】小猴打架(Prufer编码)的更多相关文章

  1. [BZOJ1430] 小猴打架 (prufer编码)

    Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森 ...

  2. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

  3. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  4. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  5. bzoj1430 小猴打架 prufer 序列

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1430 题解 prufer 序列模板题. 一个由 \(n\) 个点构成的有标号无根树的个数为 \ ...

  6. bzoj1430: 小猴打架(prufer序列)

    1430: 小猴打架 题目:传送门 简要题意: n只互不相识的猴子打架,打架之后就两两之间连边(表示已经相互认识),只有不认识(朋友的朋友都是朋友)的两只猴子才会打架.最后所有的猴子都会连成一棵树,也 ...

  7. bzoj 1430 小猴打架 prufer 性质

    小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 709  Solved: 512[Submit][Status][Discuss] Descri ...

  8. [bzoj1430]小猴打架_prufer序列

    小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们 ...

  9. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  10. 【prufer编码】BZOJ1430 小猴打架

    Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森 ...

随机推荐

  1. 第一个 swift 项目

    今天 学习了 一丢丢 swift,特此记录一下 ! 原来创建的时候 ,只要把 语言 由以前的Object-C改为Swift,变创建好了自己的swift工程 第一个简单的swift demo 上代码 i ...

  2. 前端之HTML语法及常用标签

    html语法: 1.常规标记: <标记 属性=“属性值” 属性=“属性值”></标记>: 2.空标记: <标记 属性=“属性值” 属性=“属性值”/> 注意事项: ...

  3. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  4. vs 2015 编译cocos2dx 报错

    VS 2015 compiling cocos2d-x 3.3 error “fatal error C1189: #error: Macro definition of snprintf confl ...

  5. 【学习笔记】深入理解js原型和闭包(9)—— 简述【执行上下文】下

    继续上一篇文章(https://www.cnblogs.com/lauzhishuai/p/10078231.html)的内容. 上一篇我们讲到在全局环境下的代码段中,执行上下文环境中有如何数据: 变 ...

  6. Ubuntu16.04常用操作命令总结ing

    查看软件安装目录:whereis 软件名称(如:whereis mysql,where is sqlite3等) 安装软件:apt/apt-get install 软件名称(如:apt/apt-get ...

  7. MYSQL 二次筛选,统计,最大值,最小值,分组,靠拢

    HAVING 筛选后再 筛选 SELECT CLASS,SUM(TOTAL_SCORES) FROM student_score GROUP BY CLASS HAVING SUM(TOTAL_SCO ...

  8. 洛谷 大牛分站 P1000 超级玛丽游戏

    题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. *** ...

  9. java GZIP压缩与解压缩

    1.GZIP压缩 public static byte[] compress(String str, String encoding) { if (str == null || str.length( ...

  10. 必知干货:Web前端应用十种常用技术你全都知道吗?

    Web前端应用十种常用技术,随着JS与XHTML的应用普及,越来越多的web界面应用技术出现在网站上,比如我们常见的日历控件,搜索下拉框等,这些web界面应用技术大大的丰富了网站的表现形式,本文将为您 ...