bzoj 3218: a + b Problem【主席树+最小割】
直接建图比较显然,是(s,i,w),(i,t,b),(i,i',p),(i,j,inf),然而建出来之后发现边数是n方级别的,显然跑不过去,然后就有一种比较神的思路:把a离散了建一棵权值线段树,然后要连的j直接放到一个区间内。然而题目又要求j<i,所以需要可持久化
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int N=5005,M=500005,inf=1e9;
int n,S,T,ans,h[M],cnt=1,g[N],l[N],r[N],a[N],rt[N],si,tot,le[M];
struct qwe
{
int ne,to,v;
}e[M];
struct zhuxishu
{
int l,r;
}t[M];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<endl;
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[S]=1;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(!le[e[i].to]&&e[i].v>0)
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[T];
}
int dfs(int u,int f)
{
if(u==T||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].v>0)
{
int t=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=t;
e[i^1].v+=t;
us+=t;
}
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(S,inf);
return re;
}
void jia(int x,int ll,int rr,int l,int r,int k)
{
if(!x)
return;
if(ll>=l&&rr<=r)
{
ins(k,x,inf);
return;
}
int mid=(ll+rr)>>1;
if(l<=mid)
jia(t[x].l,ll,mid,l,r,k);
if(r>mid)
jia(t[x].r,mid+1,rr,l,r,k);
}
void update(int u,int x)
{
int ro=rt[u-1];
rt[u]=++tot;
int now=tot,l=1,r=si;
while(1)
{
int mid=(l+r)>>1;
if(ro)
ins(now,ro,inf);
ins(now,u,inf);
if(l==r)
break;
if(x<=mid)
{
t[now].l=++tot;
t[now].r=t[ro].r;
ro=t[ro].l;
now=t[now].l;
r=mid;
}
else
{
t[now].l=t[ro].l;
t[now].r=++tot;
ro=t[ro].r;
now=t[now].r;
l=mid+1;
}
}
}
int main()
{
n=read();
S=0,T=2*n+1;
for(int i=1;i<=n;i++)
{
int b,w,p;
a[i]=read(),b=read(),w=read(),l[i]=read(),r[i]=read(),p=read();
g[i]=a[i];
ans=ans+b+w;
ins(S,i,b);
ins(i,T,w);
ins(i,i+n,p);
}
sort(g+1,g+1+n);
si=unique(g+1,g+1+n)-g-1;
tot=T;
for(int i=1;i<=n;i++)
{
int le=lower_bound(g+1,g+1+si,l[i])-g,ri=upper_bound(g+1,g+1+si,r[i])-g-1,now=lower_bound(g+1,g+1+si,a[i])-g;
jia(rt[i-1],1,si,le,ri,i+n);
update(i,now);
}
printf("%d\n",ans-dinic());
return 0;
}
bzoj 3218: a + b Problem【主席树+最小割】的更多相关文章
- BZOJ 3218 UOJ #77 A+B Problem (主席树、最小割)
大名鼎鼎的A+B Problem, 主席树优化最小割-- 调题死活调不对,一怒之下改了一种写法交上去A了,但是改写法之后第4,5个点常数变大很多,于是喜提UOJ全站倒数第三 目前还不知道原来的写法为什 ...
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- bzoj 3218 a + b Problem(最小割+主席树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3218 [题意] 给n个格子涂白或黑色,白则wi,黑则bi的好看度,若黑格i存在: 1& ...
- [BZOJ 3218] A + B Problem 【可持久化线段树 + 网络流】
题目连接:BZOJ - 3218 题目分析 题目要求将 n 个点染成黑色或白色,那么我们可以转化为一个最小割模型. 我们规定一个点 i 最后属于 S 集表示染成黑色,属于 T 集表示染成白色,那么对于 ...
- bzoj 3489 A simple rmq problem——主席树套线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3489 题解:http://www.itdaan.com/blog/2017/11/24/9b ...
- BZOJ.3489.A simple rmq problem(主席树 Heap)
题目链接 当时没用markdown写,可能看起来比较难受...可以复制到别的地方看比如DevC++. \(Description\) 给定一个长为n的序列,多次询问[l,r]中最大的只出现一次的数.强 ...
- [BZOJ 3218]a + b Problem
又是一道主席树优化网络流的好题 按约大爷的教导,源点为白,汇点为黑,搞成最小割 发现暴力连边要爆炸,但是要连的点在线段树中都构成了一个区间,果断主席树优化之 为什么不用一般线段树? 因为要满足 j&l ...
- bzoj 4448 [Scoi2015]情报传递(主席树,LCA)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4448 [题意] 给定一颗树,询问一条路径上权值小于t-c的点数. [思路] 将一个2查 ...
- BZOJ 3932: [CQOI2015]任务查询系统 [主席树]
传送门 题意: 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行),其优先级为Pi 调度系统会经常向查询系统询问,第Xi ...
随机推荐
- mysql查所有列名
查询该视图 information_schema.columns 该有的都有 desc information_schema.columns; select * from information_ ...
- poj2553 有向图缩点,强连通分量。
//求这样的sink点:它能达到的点,那个点必能达到他,即(G)={v∈V|任意w∈V:(v→w)推出(w→v)} //我法:tarjan缩点后,遍历点,如果该点到达的点不在同一个强连通中,该点排除, ...
- 2018 江苏省邀请赛 H
题目链接 https://nanti.jisuanke.com/t/28872 解析 递推 直接套杜教板子 AC代码 #include <cstdio> #include <cstr ...
- ubuntu-12.04下安装postgresql
2013-10-01 20:42:57| moniter参考资料:Ubuntu 12.04下PostgreSQL-9.1安装与配置详解(在线安装)一.安装postgresqlbamboo@bam ...
- mysql 统计数据,按照日期分组,把没有数据的日期也展示出来
因为业务需求,要统计每天的新增用户并且要用折线图的方式展示. 如果其中有一天没有新增用户的话,这一天就是空缺的,在绘制折线图的时候是不允许的,所有要求把没有数据的日期也要在图表显示. 查询2019-0 ...
- Spring中使用存储过程
以下内容引用自http://wiki.jikexueyuan.com/project/spring/jdbc-framework-overview/sql-stored-procedure-in-sp ...
- sys.argv的妙用:python命令行参数列表的修改、增加、删除
是否妙用取决于你怎么用 1.sys.argv是用来获取命令行参数的方法,本身是一个list.你搜其实用方法,这方面的介绍最多,这里不赘述 2.那么问题是:sys.argv可以赋值吗?可以扩充吗?可以修 ...
- pycharm查看代码注释的方法,代码编写日志及作者信息等
竟然在边栏有个右键的快捷键.annotate可以查看代码书写日期及作者 鼠标悬停可以看到更加详细的时间等信息 原理应该是利用git blame
- 基于unicorn-engine的虚拟机的实现(WxSpectre)
反病毒虚拟机是一个很有优势的工具,可以说反病毒软件是否存在模拟器是衡量反病毒软件能力的一个指标.反病毒虚拟机不光是内嵌在反病毒软件内部,来动态执行样本.这种虚拟机一般也可以单独用来动态执行批量样本,检 ...
- 【c++】面向对象程序设计之继承中的类作用域
当存在继承关系时,派生类的作用域嵌套在其基类的作用域之内. 一个对象.引用或指针的静态类型决定了该对象的哪些成员是可见的.即使静态类型与动态类型可能不一致,但我们使用哪些成员仍然是由静态类型决定的.基 ...