bzoj 3456: 城市规划【NTT+多项式求逆】
参考:http://blog.miskcoo.com/2015/05/bzoj-3456
首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目,显然边数是\( C_{n}^{2} \),所以\( g(n)=2{C_{n}{2}} \),那么f[n]=g[n]-n个点的简单(无重边无自环)无向不连通图数目,后面那部分可以枚举1所在联通块的1点数,当这个块有i个点时,方案数为从n-1个点中选出i-1个(减去点1)* f[i](这i个点组成无向连通图方案数)*g[n-i](剩下的点组成无向图的方案数),写成公式就是\( \sum_{i=1}{n-1}C_{n-1}{i-1}f[i]g[n-i] \),然后把这两部分相减就得到了递推式:
\]
\]
然后开始大力推式子,目标是推出卷积!
\]
\]
\]
$$看起来有点样子了,然而这是递推式怎么办!
开始等号左右瞎移项
\]
2{C_n2}-f[n]=(n-1)!\sum_{i=1}{n-1}\frac{f[i]}{(i-1)!}*\frac{2{C_{n-i}^2}}{(n-i)!}
2{C_n2}=(n-1)!\sum_{i=1}{n-1}\frac{f[i]}{(i-1)!}*\frac{2{C_{n-i}^2}}{(n-i)!}+f[n]
2{C_n2}=(n-1)!\sum_{i=1}{n}\frac{f[i]}{(i-1)!}*\frac{2{C_{n-i}^2}}{(n-i)!}
\frac{2{C_n2}}{(n-1)!}=\sum_{i=1}{n}\frac{f[i]}{(i-1)!}*\frac{2{C_{n-i}^2}}{(n-i)!}
a[i]=\frac{f[i]}{(i-1)!},b[i]=\frac{2{C_{i}2}}{(i)!},c[i]=\frac{2{C_i2}}{(i-1)!}
这里涉及到了多项式求逆元,在这里简述一下(参考:http://blog.csdn.net/qq_33229466/article/details/70212684):
求\\( A∗G=1(mod\ x^m) \\)
已有B满足\\( A∗B=1(mod\ x^{\frac{m}{2}}) \\)
因为\\( A\∗G=1(mod\ x^{\frac{m}{2}}) \\)
所以\\( (G−B)=0(mod\ x^{\frac{m}{2}}) \\)
两边平方\\( G^2+b^2-2GB=0(mod\ x^{\frac{m}{2}}) , G^2=2GB-b^2(mod\ x^{\frac{m}{2}}) \\)
同乘A得\\( G=2B-AB \\)
然后递归求即可
```cpp
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=300005,mod=1004535809,G=3;
int n,m,a[N],b[N],c[N],nb[N],fac[N],inv[N],fi[N],tmp[N],re[N];
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int lm,int f)
{
int bt=log(lm)/log(2)+0.1;
for(int i=0;i<lm;i++)
{
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
if(i<re[i])
swap(a[i],a[re[i]]);
}
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(G,(mod-1)/(i<<1));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[k+j];
y=1ll*w*a[i+j+k]%mod;
a[j+k]=((x+y)%mod+mod)%mod;
a[i+j+k]=((x-y)%mod+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int ni=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*ni%mod;
}//cout<<"???"<<endl;
}
void ni(int a[],int b[],int n)
{
if(n==1)
{//cout<<"OK"<<endl;
b[0]=ksm(a[0],mod-2);
return;
}
ni(a,b,n/2);
memcpy(tmp,a,sizeof(a[0])*n);
memset(tmp+n,0,sizeof(tmp[0])*n);
dft(tmp,n<<1,1);
dft(b,n<<1,1);
for(int i=0;i<(n<<1);i++)
tmp[i]=1ll*b[i]*(2-1ll*tmp[i]*b[i]%mod+mod)%mod;
dft(tmp,n<<1,-1);
for(int i=0;i<n;i++)
b[i]=tmp[i];
memset(b+n,0,sizeof(b[0])*n);
}
int main()
{
scanf("%d",&n);
inv[1]=1,fac[0]=fi[0]=1;
for(int i=1;i<=n;i++)
{
if(i>1)
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fac[i]=1ll*fac[i-1]*i%mod;//cout<<fac[i]<<endl;
fi[i]=1ll*fi[i-1]*inv[i]%mod;
}
for(int i=0;i<=n;i++)
{
int now=ksm(2,1ll*(i-1)*i/2%(mod-1));
b[i]=1ll*now*fi[i]%mod;
if(i>0)
c[i]=1ll*now*fi[i-1]%mod;
}
for(m=1;m<=n;m<<=1);//cout<<bt<<" "<<m<<endl;
ni(b,nb,m);
dft(nb,m<<1,1);
dft(c,m<<1,1);
for(int i=0;i<(m<<1);i++)
a[i]=1ll*nb[i]*c[i]%mod;
dft(a,m<<1,-1);//cout<<fac[n-1]<<endl;
printf("%d\n",1ll*a[n]*fac[n-1]%mod);
return 0;
}
```\]
bzoj 3456: 城市规划【NTT+多项式求逆】的更多相关文章
- BZOJ 3456 城市规划 ( NTT + 多项式求逆 )
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- BZOJ 3456: 城市规划(dp+多项式求逆)
传送门 解题思路 这道题就是求带标号的无向连通图个数,首先考虑\(O(n^2)\)的做法,设\(f_i\)表示有\(i\)个节点的无向连通图个数,那么考虑容斥,先把所有的无向图求出,即为\(2^{C( ...
- 【BZOJ】3456: 城市规划 动态规划+多项式求逆
[题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{ ...
- 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...
- 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)
3456: 城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 658 Solved: 364 Description 刚刚解决完电力网络的问题 ...
- 【BZOJ】3456: 城市规划(多项式求ln)
题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...
- BZOJ 4555 [Tjoi2016&Heoi2016]求和 ——分治 NTT 多项式求逆
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #in ...
- [BZOJ3456]城市规划:DP+NTT+多项式求逆
写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
随机推荐
- 免费SSL申请
https://letsencrypt.org/ https://letsencrypt.org/docs/client-options/ ACMESharp (.NET, PowerShell) w ...
- new String()理解
public static void main(String[] args){ String a=new String("ddy"); String b=new String(&q ...
- S5700&S5710 产品文档 : 配置
http://support.huawei.com/hdx/hdx.do?docid=SC0000699332&lang=zh&path=PBI1-C103367%2FPBI1-C10 ...
- 新手玩个人server(阿里云)续二
小二班一番厮杀:那英四强诞生:大家闺秀,小家碧玉.窈窕淑女,妍姿俊俏 .不解释! ?不行! 陈冰,李嘉格,刘明湘.张碧晨.大多数的时候,仅仅要脸好看,一切都那么自热而然的顺理成章. 尽管网上骂声四起, ...
- 手机没Root?你照样可以渗透路由器
和Metasploit差不多,RouterSploit是一个强大的漏洞利用框架,用于快速识别和利用路由器中的普通漏洞,它还有个亮点,就是可以在绝大多数安卓设备上运行. 如果你想在电脑上运行,可以阅读这 ...
- Friefox清除旧的网页缓存
Ctrl + F5 适用于调试网页编码时,不断以旧设置显示页面
- Android MediaRecorder录音与播放
上一篇讲到了使用意图录音.这篇文章将使用MediaRecorder类来录音,从而提供很多其它的灵活性. 效果图: 源码奉上: <LinearLayout xmlns:android=" ...
- UML视频总结
"RUP 4+1"视图 学习UML我们就必须先了解这"RUP 4+1"视图,它是架构设计的结构标准,例如以下图所看到的. watermark/2/text/aH ...
- STL 源代码剖析 算法 stl_algo.h -- nth_element
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie nth_element ---------------------------------- ...
- Selenium系列之--测试框架断言【转】
selenium提供了三种模式的断言:assert .verify.waitfor 1)Assert(断言) 失败时,该测试将终止. 2)Verify(验证) 失败时,该测试将继续执行,并将错误记入日 ...