poj1151==codevs 3044 矩形面积求并
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 21511 | Accepted: 8110 |
Description
Input
The input file is terminated by a line containing a single 0. Don't process it.
Output
Output a blank line after each test case.
Sample Input
2
10 10 20 20
15 15 25 25.5
0
Sample Output
Test case #1
Total explored area: 180.00
Source
注意到要表示一个矩形,只需要知道其2个顶点的坐标就可以了(最左下,最右上)。可以用2个数组x[0...2n-1],y[0...2n-1]记录下矩形Ri的2个坐标(x1,y1),(x2,y2),然后将数组x[0...xn-1],y[0...2n-1]排序,为下一步的扫描线作准备,这就是离散化的思想。这题还可以用线段树做进一步优化,但是这里只介绍离散化的思想。
看下面这个例子:有2个矩形(1,1),(3,3)和(2,2),(4,4)。如图:
图中虚线表示扫描线,下一步工作只需要将这2个矩形覆盖过的部分的bool数组的对应位置更新为true,接下去用扫描线从左到右,从上到下扫描一遍,就可以求出矩形覆盖的总面积。
这个图对应的bool数组的值如下:
1 1 0 1 2 3
1 1 1 <----> 4 5 6
0 1 1 7 8 9
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const double eps=1e-;
double ans=,x[N<<],y[N<<],pos[N][];
bool hash[N<<][N<<];
int cmp(const void *a,const void *b){
double *aa=(double *)a;
double *bb=(double *)b;
if(fabs(*aa-*bb)<=eps) return ;
else if(*aa-*bb>) return ;
return -;
}
int main(){int i,j,k,n,x1,y1,x2,y2,cas=;
while(scanf("%d",&n)==){
if(!n) break;
for(ans=k=i=;i<n;i++,k+=){
scanf("%lf%lf%lf%lf",&pos[i][],&pos[i][],&pos[i][],&pos[i][]);
x[k]=pos[i][];y[k]=pos[i][];x[k+]=pos[i][];y[k+]=pos[i][];
}
memset(hash,,sizeof hash);
qsort(x,n<<,sizeof x[],cmp);
qsort(y,n<<,sizeof y[],cmp);
for(i=;i<n;i++){
for(k=;fabs(x[k]-pos[i][])>eps;k++); x1=k;
for(k=;fabs(y[k]-pos[i][])>eps;k++); y1=k;
for(k=;fabs(x[k]-pos[i][])>eps;k++); x2=k;
for(k=;fabs(y[k]-pos[i][])>eps;k++); y2=k;
for(j=x1;j<x2;j++){
for(k=y1;k<y2;k++){
hash[j][k]=;
}
}
}
for(i=;i<*n-;i++){
for(j=;j<*n-;j++){
ans+=hash[i][j]*(x[i+]-x[i])*(y[j+]-y[j]);
}
}
printf("Test case #%d\n",++cas);
printf("Total explored area: %.2lf\n\n",ans);
}
return ;
}
poj1151==codevs 3044 矩形面积求并的更多相关文章
- codevs 3044 矩形面积求并
3044 矩形面积求并 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不 ...
- codevs 3044 矩形面积求并 (扫描线)
/* 之前一直偷懒离散化+暴力做着题 今天搞一下扫描线 自己按照线段树的一般写法写的有些问题 因为不用于以前的区间sum so 题解搬运者23333 Orz~ 去掉了打标记的过程 同时更新区间的时候先 ...
- codevs 3044 矩形面积求并 || hdu 1542
这个线段树的作用其实是维护一组(1维 平面(?) 上的)线段覆盖的区域的总长度,支持加入/删除一条线段. 线段树只能维护整数下标,因此要离散化. 也可以理解为将每一条处理的线段分解为一些小线段,要求每 ...
- codves 3044 矩形面积求并
codves 3044 矩形面积求并 题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Desc ...
- 【题解】codevs 3044 矩形面积合并
传送门 3044 矩形面积求并 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下 ...
- 3044 矩形面积求并 - Wikioi
题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...
- [Codevs] 矩形面积求并
http://codevs.cn/problem/3044/ 线段树扫描线矩形面积求并 基本思路就是将每个矩形的长(平行于x轴的边)投影到线段树上 下边+1,上边-1: 然后根据线段树的权值和与相邻两 ...
- [codevs3044][POJ1151]矩形面积求并
[codevs3044][POJ1151]矩形面积求并 试题描述 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行一个数n ...
- 矩形面积求并(codevs 3044)
题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Description 可能有多组数据,读到n=0为止(不超过15组) 每组数据第一行 ...
随机推荐
- IOS沙盒(sandbox)机制和文件操作
IOS学习之IOS沙盒(sandbox)机制和文件操作 作者:totogo2010 ,发布于2012-9-21,来源:CSDN 目录: IOS学习之IOS沙盒(sandbox)机制和文件操作( ...
- jquery.form.min.js
/*! * jQuery Form Plugin * version: 3.51.0-2014.06.20 * Requires jQuery v1.5 or later * Copyright (c ...
- css float属性详解
定义和用法 float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素.如果浮动非 ...
- ECNU 3263 丽娃河的狼人传说 (贪心)
链接:http://acm.ecnu.edu.cn/problem/3263/ 题意: 从 1 到 n 的一条数轴.有 m 个区间至少要安装一定数量的路灯,路灯只能装在整数点上,有k盏路灯已经安装好 ...
- 大数据平台消息流系统Kafka
Kafka前世今生 随着大数据时代的到来,数据中蕴含的价值日益得到展现,仿佛一座待人挖掘的金矿,引来无数的掘金者.但随着数据量越来越大,如何实时准确地收集并分析如此大的数据成为摆在所有从业人员面前的难 ...
- django2
八 Models 数据库的配置 1 django默认支持sqlite,mysql, oracle,postgresql数据库. <1> sqlite django默认使用sqlit ...
- C# 3.0特性
C# 3.0的扩展特性主要包括以下几点,我们在后面也会按照这个顺序进行介绍:1.隐式局部变量(implicitly typed local variables),通过初始化该局部变量的表达式自动推断出 ...
- 前端开发:JavaScript---DOM & BOM
DOM:Document Object Model 文档对象类型 模态框案例 <!DOCTYPE html> <html lang="en"> <h ...
- 网络编程基础:粘包现象、基于UDP协议的套接字
粘包现象: 如上篇博客中最后的示例,客户端有个 phone.recv(2014) , 当服务端发送给客户端的数据大于1024个字节时, 多于1024的数据就会残留在管道中,下次客户端再给服务端发命令时 ...
- [bzoj1895][Pku3580]supermemo_非旋转Treap
supermemo bzoj-1895 Pku-3580 题目大意:给定一个n个数的序列,需支持:区间加,区间翻转,区间平移,单点插入,单点删除,查询区间最小值. 注释:$1\le n\le 6.1\ ...