传送门

据rqy说有这么一个结论$$ans=\min_{v \in V,F_n(v)\neq \infty} \max_{0 \leq k \leq n - 1} \left[\frac{F_n(v)-F_k(v)}{n-k}\right]\qquad$$

其中新建一个节点\(S\)向所有点连边,\(F_i(v)\)表示从\(S\)开始经过恰好\(i\)条边到达\(v\)的最短路

代码里\(F\)的下标都减了\(1\)

证明这里

//minamoto
#include<bits/stdc++.h>
#define rint register int
#define inf 1e12
using namespace std;
const int N=3005,M=10005;
double F[N][N],w[M];int u[M],v[M],n,m;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
for(rint i=1;i<=m;++i)scanf("%d%d%lf",&u[i],&v[i],&w[i]);
for(rint i=0;i<=n;++i)for(rint j=1;j<=n;++j)F[i][j]=i?inf:0;
for(rint i=0;i<n;++i)for(rint j=1;j<=m;++j)
F[i+1][v[j]]=min(F[i+1][v[j]],F[i][u[j]]+w[j]);
double ans=inf,ans1;
for(rint i=1;i<=n;++i)if(F[n][i]<1e11){
ans1=-inf;
for(rint j=0;j<n;++j)ans1=max(ans1,(F[n][i]-F[j][i])/(n-j));
ans=min(ans,ans1);
}
printf("%.8lf\n",ans);return 0;
}

P3199 [HNOI2009]最小圈的更多相关文章

  1. 洛谷 P3199 [HNOI2009]最小圈

    P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...

  2. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  3. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  4. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  5. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  6. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  7. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  8. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

随机推荐

  1. mysql如何将一个字段多个类型串成一个字符串?

    结论 先说结论,可以使用group_concat group by的组合实现多行变一行,将一个字段的多个类型串成一个字段 需求: 如题,一个字段如电影类别,一部电影可以是多个类别,如喜剧.动作片等,其 ...

  2. (C/C++学习)14.C语言字符串处理函数(二)

    说明:上节着重解释了字符串处理的库函数处理,这节将针对一些常用的需求,进行非库函数的处理. 一.去除某一个字符串中的某个字符 1.去除字符串右边的空格 void trimStrRightSpace(c ...

  3. HDU - 5952 Counting Cliques(dfs搜索)

    题目: A clique is a complete graph, in which there is an edge between every pair of the vertices. Give ...

  4. python3 的range

    1. range(3):从0到2: 2. range(3,10,2):从3到10,隔一个数显示一个: 3.list(range(3,10,-2):结果为空: 4. S[::2] : 同隔一个数显示一个 ...

  5. python re模块与正则

    1. re模块 1.1 转义符 正则表达式中的转义符在python的字符串中也刚好有转移的作用,但是正则表达式中的转义符和字符串中的转义符并没关系,且还容易有冲突. 为了避免这种冲突,我们所有的正则都 ...

  6. 【模板】大数乘法(51nod 1027)

    #include<cstdio> #include<cstring> #include<algorithm> #define LL long long #defin ...

  7. [ZJOI2009]硬币游戏

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 920  Solved: 406[Submit][Status][Discuss] Descriptio ...

  8. 生成随机数验证码的工具类(from韩顺平)

    生成随机数验证码的工具类 package com.cx; //生成随机数的图片 import java.awt.Color; import java.awt.Font; import java.awt ...

  9. Just a Hook 线段树 区间更新

    Just a Hook In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of t ...

  10. Ubuntu 16.04添加阿里云源/163源

    添加国内源有个好处,比如下载软件时直接时国内的服务器,速度有保证. 以下是操作方法: 1.备份 sudo cp /etc/apt/sources.list /etc/apt/sources.list. ...