3668: [Noi2014]起床困难综合症


Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 2612  Solved: 1500
[Submit][Status][Discuss]

Description


21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd 的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n扇防御门组成。每扇防御门包括一个运算op和一个参数t,其中运算一定是OR,XOR,AND中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为x,则其通过这扇防御门后攻击力将变为x op t。最终drd 受到的伤害为对方初始攻击力x依次经过所有n扇防御门后转变得到的攻击力。由于atm水平有限,他的初始攻击力只能为0到m之间的一个整数(即他的初始攻击力只能在0,1,...,m中任选,但在通过防御门之后的攻击力不受 m的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。

Input


第1行包含2个整数,依次为n,m,表示drd有n扇防御门,atm的初始攻击力为0到m之间的整数。接下来n行,依次表示每一扇防御门。每行包括一个字符串op和一个非负整数t,两者由一个空格隔开,且op在前,t在后,op表示该防御门所对应的操作, t表示对应的参数。n<=10^5

Output


一行一个整数,表示atm的一次攻击最多使 drd 受到多少伤害。

Sample Input


AND
OR
XOR

Sample Output



HINT


【样例说明1】
atm可以选择的初始攻击力为0,1,...,10。
假设初始攻击力为4,最终攻击力经过了如下计算
4 AND 5 = 4
4 OR 6 = 6
6 XOR 7 = 1
类似的,我们可以计算出初始攻击力为1,3,5,7,9时最终攻击力为0,初始攻击力为0,2,4,6,8,10时最终攻击力为1,因此atm的一次攻击最多使 drd 受到的伤害值为1。
0<=m<=10^9
0<=t<=10^9  
一定为OR,XOR,AND 中的一种
【运算解释】
在本题中,选手需要先将数字变换为二进制后再进行计算。如果操作的两个数二进制长度不同,则在前补0至相同长度。OR为按位或运算,处理两个长度相同的二进制数,两个相应的二进制位中只要有一个为1,则该位的结果值为1,否则为0。XOR为按位异或运算,对等长二进制模式或二进制数的每一位执行逻辑异或操作。如果两个相应的二进制位不同(相异),则该位的结果值为1,否则该位为0。 AND 为按位与运算,处理两个长度相同的二进制数,两个相应的二进制位都为1,该位的结果值才为1,否则为0。
例如,我们将十进制数5与十进制数3分别进行OR,XOR 与 AND 运算,可以得到如下结果:
 
              0101 (十进制 5)           0101 (十进制 5)           0101 (十进制 5)
 
              OR 0011 (十进制 3)    XOR 0011 (十进制 3)    AND 0011 (十进制 3)
 
           = 0111 (十进制 7)       = 0110 (十进制 6)        = 0001 (十进制 1)

Source


分析:


这种跟位运算有关的一般都是拆成各位依次贪心就好。。

AC代码:


# include <iostream>
# include <cstdio>
using namespace std;
const int N = 1e5 + ;
int n,tp[N],a[N][],ans,ret,m;
int main()
{
scanf("%d %d",&n,&m);char ch[];int x;
for(int i = ;i <= n;i++)
{
scanf("%s",ch);scanf("%d",&x);
for(int j = ;~j;j--)
a[i][j] = x >> j & ;
if(ch[] == 'O')tp[i] = ;
if(ch[] == 'X')tp[i] = ;
}
for(int i = ;~i;i--)
{
int t1 = ,t2 = ;
for(int j = ;j <= n;j++)
{
if(tp[j] == )t1 &= a[j][i],t2 &= a[j][i];
if(tp[j] == )t1 |= a[j][i],t2 |= a[j][i];
if(tp[j] == )t1 ^= a[j][i],t2 ^= a[j][i];
}
if(t2)ans += ( << i);
else
if(t1 && ret + ( << i) <= m)ret += ( << i),ans += ( << i);
}
printf("%d\n",ans);
}

[Bzoj3668][Noi2014]起床困难综合症(位运算)的更多相关文章

  1. [P2114] [NOI2014]起床困难综合症 (位运算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2114 Solution 一道很有意思的位运算题. 要做这一题,我们首先得了解一个很重要的特点 位运算过程 ...

  2. 洛谷 P2114 [NOI2014]起床困难综合症 位运算

    题目描述 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了该病的发病原因 ...

  3. luogu P2114 [NOI2014]起床困难综合症 位运算 二进制

    建议去uoj那里去测,数据比较强 位运算的题目,就得一位一位的分开考虑 然后枚举初始值的最高位是0 是1 的最终攻击 (二进制内)最高位是1肯定比次位是1次次位是1次次次位是1···的大吧,显然 然后 ...

  4. luogu 2114 [NOI2014]起床困难综合症 位运算+贪心

    感觉这个思路非常巧妙啊~ code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s&qu ...

  5. BZOJ-3668 起床困难综合症 位运算+贪心

    faebdc学长杂题选讲中的题目...还是蛮简单的...位运算写的不熟练... 3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec Memory Limit: 512 ...

  6. bzoj3668: [Noi2014]起床困难综合症

    从高位到低位枚举期望的应该是ans最高位尽量取一.如果该数最高位为o的话能够取得1直接更新ans否则判断该位取1是否会爆m不会的话就加上. #include<cstdio> #includ ...

  7. bzoj千题计划238:bzoj3668: [Noi2014]起床困难综合症

    http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这..一位一位的来就好了呀 #include<cstdio> #include&l ...

  8. [bzoj3668][Noi2014][起床困难综合症] (按位贪心)

    Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...

  9. [BZOJ3668] [Noi2014] 起床困难综合症 (贪心)

    Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...

随机推荐

  1. 里特定律 - Little's Law

    里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...

  2. 使用ABAP正则表达式解析HTML标签

    需求就是我用ABAP的某个函数从数据库读取一个字符串出来,该字符串的内容是一个网页. 网页的form里包含了很多隐藏的input field.我的任务是解析出name为svyValueGuid的inp ...

  3. HTML5应用 + Cordova = 平台相关的混合应用

    Jerry之前的一篇文章 SAP Fiori应用的三种部署方式 曾经提到SAP Fiori应用的三种部署方式: On Premise环境下以ABAP BSP应用作为Fiori应用部署和运行的载体 部署 ...

  4. (转)SpringMVC学习(十二)——SpringMVC中的拦截器

    http://blog.csdn.net/yerenyuan_pku/article/details/72567761 SpringMVC的处理器拦截器类似于Servlet开发中的过滤器Filter, ...

  5. 1.1 Qt入门

    学习Qt的前提是学好C++. 我刚入门Qt,打算趁着暑假2个月时间来学习<C++ GUI Qt 4>这本书. 现在有Qt4和Qt5,似乎很多公司都还是在使用Qt4,所以我也就选择了学习Qt ...

  6. python之字符串str操作方法

    str.upper() (全部大写) str.lower() (全部小写) str.startswith() (以什么开头) str.endswith() (以什么结尾) str.count() (统 ...

  7. JavaSE-26 Swing

    学习要点 关于Swing Swing容器组件 Swing布局管理器 Swing组件 Swing菜单组件 关于Swing Swing和AWT都是java开发图形用户界面的工具包. AWT:早期Java版 ...

  8. vue 中scroll事件不触发问题

    在vue项目中需要监听滚动条滚动的位置,结果写了scroll监听事件就是不生效,最后查资料发现是页面有样式设置了over-flow:scroll,去掉之后完美解决.(页面样式中存在over-flow: ...

  9. 「 SPOJ GSS3 」 Can you answer these queries III

    # 题目大意 GSS3 - Can you answer these queries III 需要你维护一种数据结构,支持两种操作: 单点修改 求一个区间的最大子段和 # 解题思路 一个区间的最大子段 ...

  10. 「 HDOJ P3887 」 Counting Offspring

    翻译 题目描述 给你一棵树,和它的树根 $P$,并且节点从 $1\rightarrow n$ 编号,现在定义 $f(i)$ 为 $i$ 的子树中,节点编号小于 $i$ 的节点的个数. 输入格式 有多组 ...