There are many anime that are about "love triangles": Alice loves Bob, and Charlie loves Bob as well, but Alice hates Charlie. You are thinking about an anime which has n characters.
The characters are labeled from 1 to n.
Every pair of two characters can either mutually love each other or mutually hate each other (there is no neutral state).

You hate love triangles (A-B are in love and B-C are in love, but A-C hate each other), and you also hate it when nobody is in love. So, considering any three characters, you will be happy if exactly one pair is in love (A and B love each other, and C hates
both A and B), or if all three pairs are in love (A loves B, B loves C, C loves A).

You are given a list of m known relationships in the anime. You know for sure that certain pairs love each other, and certain pairs hate
each other. You're wondering how many ways you can fill in the remaining relationships so you are happy with every triangle. Two ways are considered different if two characters are in love in one way but hate each other in the other. Print this count modulo 1 000 000 007.

Input

The first line of input will contain two integers n, m (3 ≤ n ≤ 100 000, 0 ≤ m ≤ 100 000).

The next m lines will contain the description of the known relationships. The i-th
line will contain three integers ai, bi, ci.
If ci is
1, then aiand bi are
in love, otherwise, they hate each other (1 ≤ ai, bi ≤ nai ≠ bi).

Each pair of people will be described no more than once.

Output

Print a single integer equal to the number of ways to fill in the remaining pairs so that you are happy with every triangle modulo1 000 000 007.

Sample test(s)
input
3 0
output
4
input
4 4
1 2 1
2 3 1
3 4 0
4 1 0
output
1
input
4 4
1 2 1
2 3 1
3 4 0
4 1 1
output
0
Note

In the first sample, the four ways are to:

  • Make everyone love each other
  • Make 1 and 2 love each other, and 3 hate 1 and 2 (symmetrically, we get 3 ways from this).

In the second sample, the only possible solution is to make 1 and 3 love each other and 2 and 4 hate each other.

题意:

给出一个无向图,要求加入几天边使得其成为一个全然图,使得随意三个点组成的环没有三角恋,或者互不相爱

思路:

而全然图是有条件的,首先我们给每条边按题目要求赋值,1代表相爱,0代表不相爱

那么对于随意三个点的三条边而言,必定仅仅有两种情况:所有为1。或者两个为0,一个为1

那么在按题目要求的输入先把确定的边构造好后。对于那些还没有构造的边我们能够分情况

1.假设有两条边是同色,那么还有一条边必须是1

2.假设两条边不同色,那么另外一条边必定是0

那么我们就能够用搜索完毕

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 100005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define mpa make_pair
#define lowbit(x) (x&-x)
const int mod = 1e9+7; vector<pair<int,int> > mat[N];
int n,m;
int vis[N];
LL ans; void dfs(int u)
{
for(int i = 0;i<mat[u].size();i++)
{
int v = mat[u][i].first;
int p = mat[u][i].second;
if(vis[v]==-1)
{
if(p==1)
vis[v]=vis[u];
else
vis[v]=!vis[u];
dfs(v);
}
if(p==1 && vis[u]!=vis[v])
ans=0;
if(p==0 && vis[u]==vis[v])
ans=0;
}
} int main()
{
int i,j,k,x,y,z;
scanf("%d%d",&n,&m);
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
mat[x].push_back(mpa(y,z));
mat[y].push_back(mpa(x,z));
}
MEM(vis,-1);
ans = (mod+1)/2;
for(i = 1;i<=n;i++)
{
if(vis[i]==-1)
{
ans = (ans*2)%mod;
vis[i] = 0;
dfs(i);
}
}
printf("%I64d\n",ans); return 0;
}

Codeforces554E:Love Triangles的更多相关文章

  1. Count the number of possible triangles

    From: http://www.geeksforgeeks.org/find-number-of-triangles-possible/ Given an unsorted array of pos ...

  2. [ACM_搜索] Triangles(POJ1471,简单搜索,注意细节)

    Description It is always very nice to have little brothers or sisters. You can tease them, lock them ...

  3. acdream.Triangles(数学推导)

    Triangles Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit Stat ...

  4. UVA 12651 Triangles

    You will be given N points on a circle. You must write a program to determine how many distinctequil ...

  5. Codeforces Gym 100015F Fighting for Triangles 状压DP

    Fighting for Triangles 题目连接: http://codeforces.com/gym/100015/attachments Description Andy and Ralph ...

  6. Codeforces Round #309 (Div. 1) C. Love Triangles dfs

    C. Love Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/553/pro ...

  7. Codeforces Round #308 (Div. 2) D. Vanya and Triangles 水题

    D. Vanya and Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...

  8. Project Euler 94:Almost equilateral triangles 几乎等边的三角形

    Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...

  9. Project Euler 91:Right triangles with integer coordinates 格点直角三角形

    Right triangles with integer coordinates The points P (x1, y1) and Q (x2, y2) are plotted at integer ...

随机推荐

  1. Sql Server 中锁的概念(1)

    Sql Server 中锁的概念   锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破 ...

  2. 出现了错误。详细消息: 3 uncommitted changes would be overwritten by merge

    merge manual中有一条警告: 出现了错误.详细消息: 3 uncommitted changes would be overwritten by merge 有未提交修改情况下,不要执行me ...

  3. 利用canvas写一个验证码小功能

    刚刚开始接触canvas,写个验证码小功能练练手,实现效果图如下: 主要代码如下: html <!DOCTYPE html> <html lang="en"> ...

  4. 文艺平衡树(splay模板)

    题干:splay模板,要求维护区间反转. splay是一种码量小于treap,但支持排名,前驱后继等treap可求的东西,也支持区间反转的平衡树. 但是有两个坏处: 1.splay常数远远大于trea ...

  5. 【URAL 1989】 Subpalindromes(线段树维护哈希)

    Description You have a string and queries of two types: replace i'th character of the string by char ...

  6. 论MySQL中如何代替Oracle中select into new_table from old_table

    v_receipt         warehouse_receipt%ROWTYPE;-- 这里创建表类型,v_receipt复刻了warehouse_receipt的类型(相当于拥有了所有相同的字 ...

  7. 如何在开发时用PC端对移动端页面进行调试

    原文转载于:https://cnodejs.org/topic/56ebdf2db705742136388f71 项目名称: spy-debugger 项目地址:https://github.com/ ...

  8. 如何在小程序实现图片lazy-load懒加载效果

    自从跳一跳出现之后小程序又开始频繁出现了,在学习过程中发现小程序虽然好但是由于api不完善导致开发过程中有很多的坑,重点是网上相对小程序出现坑时解决方案显然比较少,小程序最让人觉得痛心疾首之一就是无法 ...

  9. Java学习--异常处理及其应用类

    异常是运行时在代码序列中引起的非正常状况,换句话说,异常是运行时错误.在不支持异常处理的计算机语言中,必须手动检查和处理错误----通常是通过使用错误代码,等等.这种方式既笨拙又麻烦.Java的异常处 ...

  10. 分享14个很酷的jQuery导航菜单插件

    导航按钮是网站的非常重要的一部分,因其将网站的所有部分而集中一处,jQuery导航菜单插件在其中扮演重要的角色. 本文介绍了14个很酷的jQuery导航菜单插件,它们够漂亮.简单,并且完全兼容各种类型 ...