[BZOJ1004][HNOI2008]Cards 群论+置换群+DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004
首先贴几个群论相关定义和引理。
群:G是一个集合,*是定义在这个集合上的一个运算。
如果满足以下性质,那么(G, *)是一个群。
1)封闭性,对于任意 a, b 属于 G, a * b 属于 G
2)结合律, a * b * c = a * (b * c)
3)单位元,在 G 中存在一个单位元 e ,使得对于 G 中任意的 a , a * e = e * a = a
4)逆元, 对于 G 中任意的 a ,在 G 中存在 b , 使得 a * b = e , 其中 b 叫做 a 的逆元
比如在模一个数意义下的整数加法就是一个群。
满足交换律的群是交换群,又叫阿贝尔群。
置换:可以用 (a1 -> b1, a2 -> b2, ... , an -> bn) 表示一个置换,其中 a1, ... , an 和 b1, ..., bn 都是1 到 n 的一个排列;
如果一些置换和它们的叠加运算构成一个群,就把它们叫做一个置换群。
在置换群中的 Burnside 引理:如果按照一定要求,要对1到n 的位置染色,那么本质不同的染色方案数为置换群中每个置换的不动染色方案数的平均数。
来解释以下,本质不同的染色方案是指,两个染色方案不能通过置换群中的任意置换变换使其相同,那么它们就是本质不同的。
某个置换的不动染色方案数是指,用这个置换变换之后没有发生变化的染色方案。
那么我们就是要求出每个置换的不动染色方案数。
Polya定理,如果是用k种颜色染色,那么对于置换 P 来说,它的不动染色方案数为 k^(L(P)), 其中L(P)为置换P的循环节数。
由于这道题中有颜色数目的限制,我们不能直接套Polya定理,但是可以把每个循环节当作一种物品,用背包求方案数。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int inline readint(){
int Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
int Sr,Sb,Sg,n,m,mod;
int quick_pow(int x,int y){
int base=x,sum=;
while(y){
if(y&) sum=sum*base%mod;
base=base*base%mod;
y>>=;
}
return sum;
}
int fm[][],cnt[],f[/][/][/];
bool vis[];
int dp(int x){
int tot=;
memset(vis,false,sizeof(vis));
memset(cnt,,sizeof(cnt));
memset(f,,sizeof(f));
for(int i=;i<=n;i++){
if(!vis[i]){
int j=i;
tot++;
while(!vis[fm[x][j]]){
vis[fm[x][j]]=true;
cnt[tot]++;
j=fm[x][j];
}
}
}
f[][][]=;
for(int i=;i<=tot;i++)
for(int j=Sr;j>=;j--)
for(int k=Sb;k>=;k--)
for(int t=Sg;t>=;t--){
if(j>=cnt[i]) f[j][k][t]=(f[j][k][t]+f[j-cnt[i]][k][t])%mod;
if(k>=cnt[i]) f[j][k][t]=(f[j][k][t]+f[j][k-cnt[i]][t])%mod;
if(t>=cnt[i]) f[j][k][t]=(f[j][k][t]+f[j][k][t-cnt[i]])%mod;
}
return f[Sr][Sb][Sg];
}
int main(){
Sr=readint();
Sb=readint();
Sg=readint();
m=readint();
mod=readint();
n=Sr+Sb+Sg;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
fm[i][j]=readint();
m++;
for(int i=;i<=n;i++) fm[m][i]=i;
int ans=;
for(int i=;i<=m;i++) ans+=dp(i);
ans=ans*quick_pow(m,mod-)%mod;
printf("%d\n",ans);
return ;
}
[BZOJ1004][HNOI2008]Cards 群论+置换群+DP的更多相关文章
- bzoj1004: [HNOI2008]Cards(burnside引理+DP)
题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...
- bzoj1004 [HNOI2008]Cards 置换群+背包
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...
- [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- BZOJ 1004: [HNOI2008]Cards [Polya 生成函数DP]
传送门 题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色 $m \le 60,\ r,g,b \le 20$ 咦,规定次数? <组合数学>上不是有生成 ...
- BZOJ1004 HNOI2008 Cards Burnside、背包
传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...
- 【BZOJ】1004: [HNOI2008]Cards(置换群+polya+burnside)
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用 ...
- BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】
题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...
- bzoj1004 [HNOI2008]Cards【Burnside/Polya】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆 ...
随机推荐
- (6)servlet-创建一个servlet类
1,在项目的src目录下,右键[New]-[Servlet] 2,在弹出窗口中填写信息 Package:所在包名 Name:servlet的类名 Which method stubs would yo ...
- Cmake的介绍和使用 Cmake实践【转】
本文转载自:http://www.cppblog.com/Roger/archive/2011/11/17/160368.html Cmake的介绍和使用 Cmake实践 Cmake优点: 1. ...
- YTU 2982: 奔跑吧,小明!
2982: 奔跑吧,小明! 时间限制: 1 Sec 内存限制: 128 MB 提交: 36 解决: 2 题目描述 小明陷入一个充满陷阱的密道之中,现在他要逃脱这里!到达密道的出口即可离开这处绝境! ...
- jfreechart应用1--环境配置
jfreechart应用1--环境配置 JFreeChart是一组功能强大.灵活易用的Java绘图API,使用它可以生成多种通用性的报表,包括柱状图.饼图.曲线图.甘特图等.它能够用在Swing和We ...
- 【转】使用git将项目上传到github(最简单方法)
原文地址:http://www.cnblogs.com/cxk1995/p/5800196.html 首先你需要一个github账号,所有还没有的话先去注册吧! https://github.com/ ...
- Uncaught ReferenceError: is not defined
今天,遍历一个HashSet集合对象,想用链接绑定集合对象的值,通过POST方式提交到控制器.结果程序无反应,按F12键进入调试模式,谷歌总是提示Uncaught ReferenceError: ...
- jQuery入坑指南
前言 Ajax官方文档 爱jQuery jQuery插件库 jQuery中文api input 赋值和取值 记录一下: 在写一个input赋值,二话不说就直接利用了$('#xx').val()来进行取 ...
- 3198: [Sdoi2013]spring【容斥原理+hash】
容斥是ans= 至少k位置相等对数C(k,k)-至少k+1位置相等对数C(k+1,k)+至少k+2位置相等对数*C(k+2,k) -- 然后对数的话2^6枚举状态然后用hash表统计即可 至于为什么要 ...
- 【技巧】解决win10的1803版本下,无法收到1809推送、从而无法更新到1903版本的问题。
figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...
- 【POJ - 2251】Dungeon Master (bfs+优先队列)
Dungeon Master Descriptions: You are trapped in a 3D dungeon and need to find the quickest way out! ...