bzoj2560串珠子——子集DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2560
转载:
很明显的状压dp
一开始写的dp可能会出现重复统计的情况 而且难以去重
假设 一个状态s的随意连边集合是A;
那么 A应该是 全部合法的方案(Ans)+sigma(某一部分合法(即某一部分是连通图)的方案*其他任意连边的方案);
那么可以把最终答案设置为f[i], 随意连边(也可以完全连边)设置成g[i];
先定一个基准点 x 和基准点相连的都是合法的, 其余集合 t=s^(1<<(x-1))可以随便连;
f[i]=g[i]-sigma((t的所有子集i)f[i]*g[s^i]);
为什么一个是f 一个是g 这样其实是要保证不重不漏
而且必须特别注意划分点一定是连通部分的,因为单个的点也算连通,但是这个“连通”会和随便连的方案混在一起(比如此时没有一个点相互连通的情况);
但是确实有这样的情况,所以如果把划分点作为连通部分,那么这种方案只被算了一次,不会多算;
而若把划分点作为随便连部分,那么其他每个点都会有一次单独连通情况,就会多算了。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll const mod=;
ll n,a[][],f[<<],g[<<];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
int m=(<<n)-;
for(int s=;s<=m;s++)
{
g[s]=;
for(int i=;i<=n;i++) if(s&(<<(i-)))
for(int j=i+;j<=n;j++) if(s&(<<(j-)))
(g[s]*=(a[i][j]+))%=mod;
f[s]=g[s];
int nw;
for(nw=n-;;nw--)
if(s&(<<nw))break;
nw=(s^(<<nw));//去掉一个划分点
for(int k=nw;k;k=((k-)&nw))//枚举nw的子集
((f[s]-=g[k]*f[s^k])+=mod)%=mod;//f和g别反
}
printf("%lld",f[m]);
return ;
}
bzoj2560串珠子——子集DP的更多相关文章
- bzoj2560串珠子 状压dp+容斥(?)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 515 Solved: 348[Submit][Status][Discuss] ...
- bzoj2560串珠子(子集dp)
铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci, ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- bzoj2560 串珠子 状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2560 题解 大概是这类关于无向图的联通性计数的套路了. 一开始我想的是这样的,考虑容斥,那么就 ...
- 2019.02.09 bzoj2560: 串珠子(状压dp+简单容斥)
传送门 题意简述:nnn个点的带边权无向图,定义一个图的权值是所有边的积,问所有nnn个点都连通的子图的权值之和. 思路: fif_ifi表示保证集合iii中所有点都连通其余点随意的方案数. gig ...
- [BZOJ2560]串珠子:状压DP+容斥原理
分析 为什么我去年6月做过这道题啊,估计当时抄的题解. 具体做法就是令\(f[S]\)表示保证连通点集\(S\)的方案数,\(g[S]\)表示不保证连通点集\(S\)的方案数. 容易想到: \[g[S ...
- bzoj2560 串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- 【题解】Bzoj2560串珠子
挺强的……容斥+状压DP.首先想到如果可以求出f[k],f[k]代表联通状态为k的情况下的合法方案数,则f[k] = g[k] - 非法方案数.g[k]为总的方案数,这是容易求得的.那么非法方案数我们 ...
- 题解-bzoj2560 串珠子
刚被教练数落了一通,心情不好,来写篇题解 Problem bzoj2560 题目简述:给定\(n\)个点的,每两个点\(i,j\)之间有\(c_{i,j}\)条直接相连的路(其中只能选一条或不选),问 ...
随机推荐
- luogu P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- Redis数据库No-SQL的介绍安装和使用
Redis安装步骤 1.官网下载Redis压缩包http://download.redis.io/releases/redis-5.0.2.tar.gz,然后将下载的redis上传到虚拟机的/usr/ ...
- MD5加密算法Java代码
原文:http://www.open-open.com/code/view/1428398234916 import java.security.MessageDigest; import java. ...
- C语言枚举类型(Enum)
在实际编程中,有些数据的取值往往是有限的,只能是非常少量的整数,并且最好为每个值都取一个名字,以方便在后续代码中使用,比如一个星期只有七天,一年只有十二个月,一个班每周有六门课程等. 以每周七天为例, ...
- oracle下session的查询与删除
oracle下session的查询与删除 1.查询当前session SQL> select username,sid,serial# from v$session where username ...
- WheelView实现省市区三级联动(数据库实现版本号附带完整SQL及数据)
近期在实现收货地址功能,用到了省市区三级联动效果,网上找到一般都是xml或json.数据源陈旧改动麻烦.改动了一下使用数据库方式实现了一下 数据源解决.因为数据量比較大通过初始化批量运行SQL的方式不 ...
- 查询mysql字段名和字段注释
select COLUMN_NAME,column_comment from INFORMATION_SCHEMA.Columns where table_name='表名' and table_sc ...
- C#语言循环语句for嵌套
- 【转载】一致性哈希算法(consistent hashing)
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈 ...
- 为什么说JAVA中要慎重使用继承 C# 语言历史版本特性(C# 1.0到C# 8.0汇总) SQL Server事务 事务日志 SQL Server 锁详解 软件架构之 23种设计模式 Oracle与Sqlserver:Order by NULL值介绍 asp.net MVC漏油配置总结
为什么说JAVA中要慎重使用继承 这篇文章的主题并非鼓励不使用继承,而是仅从使用继承带来的问题出发,讨论继承机制不太好的地方,从而在使用时慎重选择,避开可能遇到的坑. JAVA中使用到继承就会有两 ...