线段树之成段更新( 需要用到延迟标记,简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候)
HDU 1698
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1698
线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息)
<span style="font-size:18px;">#include<iostream>
#include<cstdio>
#include<cstring>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn=100001;
int sum[maxn<<2];
int col[maxn<<2];
void pushUP(int rt) //当前节点信息更新给父节点
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void pushdown(int rt,int m) //当前节点信息更新给儿子节点
{
if(col[rt])
{
col[rt<<1]=col[rt<<1|1]=col[rt];
sum[rt<<1]=(m-(m>>1))*col[rt];
sum[rt<<1|1]=(m>>1)*col[rt];
col[rt]=0;
}
}
void build(int l,int r,int rt) //建立线段树
{
col[rt]=0;
sum[rt]=1;
if(l==r)
return;
int m=(l+r)/2;
build(lson);
build(rson);
pushUP(rt);
}
void update(int L,int R,int c,int l,int r,int rt) //成段替换,由于只query一次总区间,所以可以直接输出1节点的信息
{
if(L<=l&&r<=R)
{
col[rt]=c;
sum[rt]=(r-l+1)*c;
return;
}
pushdown(rt,r-l+1);
int m=(l+r)/2;
if(L<=m) update(L,R,c,lson);
if(R>m) update(L,R,c,rson);
pushUP(rt);
}
int main()
{
int T,n,m;
scanf("%d",&T);
for(int cas=1;cas<=T;cas++)
{
scanf("%d%d",&n,&m);
build(1,n,1);;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
update(a,b,c,1,n,1);
}
printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);
}
return 0;
}</span>
poj 3468
链接:http://poj.org/problem?id=3468
题解:很好的一个区间更新的线段树的模型,线段树的功能,update成段增减,query区间求和,关键在于对pushdown的理解,当扩展区间与节点上区间完全吻合时,停止向下
#include<iostream>
#include<cstdio>
#include<cstring>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int maxn=100001;
long long sum[maxn<<2],col[maxn<<2];
void pushUP(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void pushdown(int rt,int m)
{
if(col[rt])
{
col[rt<<1]+=col[rt];
col[rt<<1|1]+=col[rt];
sum[rt<<1]+=(m-(m>>1))*col[rt];
sum[rt<<1|1]+=(m>>1)*col[rt];
col[rt]=0;
}
}
void build(int l,int r,int rt)
{
col[rt]=0;
if(l==r)
{
scanf("%lld",&sum[rt]);
return;
}
int m=(l+r)/2;
build(lson);
build(rson);
pushUP(rt);
}
void update(int L,int R,int c,int l,int r,int rt) //成段增减
{
if(L<=l&&r<=R)
{
col[rt]+=c;
sum[rt]+=c*(r-l+1);
return;
}
pushdown(rt,r-l+1);
int m=(l+r)/2;
if(L<=m) update(L,R,c,lson);
if(R>m) update(L,R,c,rson);
pushUP(rt);
}
long long query(int L,int R,int l,int r,int rt) //区间求和
{
if(L<=l&&r<=R)
return sum[rt];
pushdown(rt,r-l+1);
long long ret=0;
int m=(l+r)/2;
if(L<=m) ret+=query(L,R,lson);
if(R>m) ret+=query(L,R,rson);
return ret;
}
int main()
{
int n,q;
scanf("%d%d",&n,&q);
build(1,n,1);
while(q--)
{
int a,b,c;
char op[2];
scanf("%s",op);
if(op[0]=='Q')
{
scanf("%d%d",&a,&b);
printf("%lld\n",query(a,b,1,n,1));
}
else
{
scanf("%d%d%d",&a,&b,&c);
update(a,b,c,1,n,1);
}
}
return 0;
}
poj2528(线段树+离散化)
题目链接:http://poj.org/problem?id=2528
题目解答:
离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:
有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。
现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9
然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9
对其升序排序,得2 3 4 6 8 9 10
然后建立映射
2 3 4 6 8 9 10
↓ ↓ ↓ ↓ ↓ ↓ ↓
1 2 3 4 5 6 7
那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。
离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。
由于此题数据较大,所以此题要用离散化
线段树功能:update:成段替换 query:简单hash
#include<iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 11111;
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn*3];
int col[maxn<<4];
int cnt;
void PushDown(int rt) //更新到儿子节点(此处为覆盖,所以用这种方法更新)
{
if (col[rt] != -1)
{
col[rt<<1] = col[rt<<1|1] = col[rt];
col[rt] = -1;
}
}
void update(int L,int R,int c,int l,int r,int rt) //成段替换
{
if (L <= l && r <= R) {
col[rt] = c;
return ;
}
PushDown(rt);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
}
void query(int l,int r,int rt) //简单的hash,cnt统计离散化以后的长度
{
if (col[rt] != -1)
{
if (!hash[col[rt]]) cnt ++;
hash[ col[rt] ] = true;
return ;
}
if (l == r) return ;
int m = (l + r) >> 1;
query(lson);
query(rson);
}
int Bin(int key,int n,int X[]) //二分查找的过程
{
int l = 0 , r = n - 1;
while (l <= r)
{
int m = (l + r) >> 1;
if (X[m] == key) return m;
if (X[m] < key) l = m + 1;
else r = m - 1;
}
return -1;
}
int main()
{
int T , n;
scanf("%d",&T);
while (T --)
{
scanf("%d",&n);
int nn = 0;
for (int i = 0 ; i < n ; i ++) //离散化的过程
{
scanf("%d%d",&li[i] , &ri[i]);
X[nn++] = li[i];
X[nn++] = ri[i];
}
sort(X , X + nn);
int m = 1;
for (int i = 1 ; i < nn; i ++)
{
if (X[i] != X[i-1]) X[m ++] = X[i];
}
for (int i = m - 1 ; i > 0 ; i --)
{
if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;
}
sort(X , X + m);
memset(col , -1 , sizeof(col));
for (int i = 0 ; i < n ; i ++)
{
int l = Bin(li[i], m, X);
int r = Bin(ri[i], m, X);
update(l, r, i, 0, m - 1, 1);
}
cnt = 0;
memset(hash, false, sizeof(hash));
query(0, m - 1, 1);
printf("%d\n",cnt);
}
return 0;
}
线段树之成段更新( 需要用到延迟标记,简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候)的更多相关文章
- Codeforces295A - Greg and Array(线段树的成段更新)
题目大意 给定一个序列a[1],a[2]--a[n] 接下来给出m种操作,每种操作是以下形式的: l r d 表示把区间[l,r]内的每一个数都加上一个值d 之后有k个操作,每个操作是以下形式的: x ...
- hdu 1698 Just a Hook(线段树之 成段更新)
Just a Hook Time Limit: ...
- hdu 4614 Vases and Flowers(线段树:成段更新)
线段树裸题.自己写复杂了,准确说是没想清楚就敲了. 先是建点为已插花之和,其实和未插花是一个道理,可是开始是小绕,后来滚雪球了,跪了. 重新建图,分解询问1为:找出真正插画的开始点和终止点,做成段更新 ...
- POJ 2777 Count Color(线段树之成段更新)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33311 Accepted: 10058 Descrip ...
- POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...
- hdu1698 Just a Hook 线段树:成段替换,总区间求和
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1698 Problem ...
- hdu 1698 线段树(成段替换 区间求和)
一条钩子由许多小钩子组成 更新一段小钩子 变成铜银金 价值分别变成1 2 3 输出最后的总价值 Sample Input11021 5 25 9 3 Sample OutputCase 1: The ...
- POJ 3468 A Simple Problem with Integers //线段树的成段更新
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 59046 ...
- poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 37346Accepted: 10864 Descr ...
随机推荐
- codeforces 1041 e 构造
Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...
- Codeforces 655E Beautiful Subarrays【01trie树】
题目链接: http://codeforces.com/contest/665/problem/E 题意: 求异或值大于给定K的区间个数. 分析: 首先我们可以得到区间前缀的异或值. 这样我们将这个前 ...
- P2085 最小函数值 洛谷
https://www.luogu.org/problem/show?pid=2085 题目描述 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Ai*x^2+Bi*x+Ci (x∈N*) ...
- C# 打印日志
原理其实很简单,就是创建文件夹.创建文件.写入内容 首先判断文件夹.文件是否存在 然后再创建或者追加 不多介绍,直接上代码 public static void BuildLogFile(string ...
- JDBC 数据库连接 Java操作数据库 jdbc快速入门
JDBC基本概念 Java DataBase Connectivity 数据库连接 java操作数据库 本质上(sun公司的程序员)定义的一套操作关系型数据库的规则 既接口 更新内容之前 代码 pa ...
- Kafka windows下的安装
1. 安装JDK 1.1 安装文件:http://www.oracle.com/technetwork/java/javase/downloads/index.html 下载JDK1.2 安装完成后需 ...
- 内存管理[5]通过 GetProcessHeaps 函数获取了当前进程的堆句柄列表
本例在建立一个新的堆前后分别通过 GetProcessHeaps 函数获取了当前进程的堆句柄列表, 没想到一个最简单的程序也有 5 个堆. 效果图: unit Unit1; interface use ...
- linux 配置maven环境变量
vi /etc/profile 按照如下样例编辑环境变量. 编辑之后记得使用source /etc/profile命令是改动生效. 5.验证结果 在任意路径下执行mvn -version验证命令是否有 ...
- Android自己主动升级框架
先看效果 使用 package com.ydl.versionupdate; import android.app.Activity; import android.content.Context; ...
- 【源代码】LruCache源代码剖析
上一篇分析了LinkedHashMap源代码,这个Map集合除了拥有HashMap的大部分特性之外.还拥有链表的特点,即能够保持遍历顺序与插入顺序一致. 另外.当我们将accessOrder设置为tr ...