题目链接:

D. Bear and Two Paths

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Bearland has n cities, numbered 1 through n. Cities are connected via bidirectional roads. Each road connects two distinct cities. No two roads connect the same pair of cities.

Bear Limak was once in a city a and he wanted to go to a city b. There was no direct connection so he decided to take a long walk, visiting each city exactly once. Formally:

  • There is no road between a and b.
  • There exists a sequence (path) of n distinct cities v1, v2, ..., vn that v1 = avn = b and there is a road between vi and vi + 1 for .

On the other day, the similar thing happened. Limak wanted to travel between a city c and a city d. There is no road between them but there exists a sequence of n distinct cities u1, u2, ..., un that u1 = cun = d and there is a road between ui and ui + 1 for .

Also, Limak thinks that there are at most k roads in Bearland. He wonders whether he remembers everything correctly.

Given nk and four distinct cities abcd, can you find possible paths (v1, ..., vn) and (u1, ..., un) to satisfy all the given conditions? Find any solution or print -1 if it's impossible.

Input
 

The first line of the input contains two integers n and k (4 ≤ n ≤ 1000, n - 1 ≤ k ≤ 2n - 2) — the number of cities and the maximum allowed number of roads, respectively.

The second line contains four distinct integers abc and d (1 ≤ a, b, c, d ≤ n).

Output
 

Print -1 if it's impossible to satisfy all the given conditions. Otherwise, print two lines with paths descriptions. The first of these two lines should contain n distinct integers v1, v2, ..., vn where v1 = a and vn = b. The second line should contain n distinct integers u1, u2, ..., unwhere u1 = c and un = d.

Two paths generate at most 2n - 2 roads: (v1, v2), (v2, v3), ..., (vn - 1, vn), (u1, u2), (u2, u3), ..., (un - 1, un). Your answer will be considered wrong if contains more than k distinct roads or any other condition breaks. Note that (x, y) and (y, x) are the same road.

Examples
 
input
7 11
2 4 7 3
output
2 7 1 3 6 5 4
7 1 5 4 6 2 3
input
1000 999
10 20 30 40
output
-1

题意:

给出n个节点,然后给出两条路线的起点和终点,要求你构造一个无向图,使无向图中a,b之间和c,d之间均无直接相连的边,且要求这个图的边的条数不超过k;

思路:

发现n==4时怎么都不可能满足;
可以构造这样的无向图
第一条路线ac...db; 第二条路线ca...bd;
这样的边是n+1条,是最少的了; AC代码
#include <bits/stdc++.h>
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=1e5+;
int n,k,a,b,c,d;
int vis[];
int main()
{
scanf("%d%d",&n,&k);
scanf("%d%d%d%d",&a,&b,&c,&d);
if(k<n+||n==)cout<<"-1"<<"\n";
else
{
vis[a]=;
vis[b]=;
vis[c]=;
vis[d]=;
printf("%d %d ",a,c);
for(int i=;i<=n;i++)
{
if(!vis[i])
{
printf("%d ",i);
}
}
printf("%d %d\n",d,b);
printf("%d %d ",c,a);
for(int i=;i<=n;i++)
{
if(!vis[i])
{
printf("%d ",i);
}
}
printf("%d %d \n",b,d); } return ;
}

codeforces 673D D. Bear and Two Paths(构造)的更多相关文章

  1. Codeforces Round #351 (VK Cup 2016 Round 3, Div. 2 Edition) D. Bear and Two Paths 构造

    D. Bear and Two Paths 题目连接: http://www.codeforces.com/contest/673/problem/D Description Bearland has ...

  2. D. Bear and Two Paths(贪心构造)

    D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  3. VK Cup 2016 D. Bear and Two Paths 模拟

    D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  4. [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)

    [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...

  5. Codeforces Round #351 (VK Cup 2016 Round 3, Div. 2 Edition) D Bear and Two Paths

    题目链接: http://codeforces.com/contest/673/problem/D 题意: 给四个不同点a,b,c,d,求是否能构造出两条哈密顿通路,一条a到b,一条c到d. 题解: ...

  6. Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)

    <题目链接> 题目大意:给定一个无向图,该无向图不含自环,且无重边.现在要你将这个无向图定向,使得不存在任何一条路径长度大于等于2.然后根输入边的顺序,输出构造的有向图.如果构造的边与输入 ...

  7. Educational Codeforces Round 7 D. Optimal Number Permutation 构造题

    D. Optimal Number Permutation 题目连接: http://www.codeforces.com/contest/622/problem/D Description You ...

  8. Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉

    Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...

  9. Codeforces Round #339 (Div. 1) C. Necklace 构造题

    C. Necklace 题目连接: http://www.codeforces.com/contest/613/problem/C Description Ivan wants to make a n ...

随机推荐

  1. GridView动态添加View

    activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...

  2. hdu 3594 Cactus /uva 10510 仙人掌图判定

    仙人掌图(有向):同时满足:1强连通:2任何边不在俩个环中. 个人理解:其实就是环之间相连,两两只有一个公共点,(其实可以缩块),那个公共点是割点.HDU数据弱,网上很多错误代码和解法也可以过. 个人 ...

  3. Cookie 和 Session 有什么区别呢?

    Cookie 和 Session 有什么区别呢?大部分的面试者应该都可以说上一两句,比如:什么是 Cookie?什么是 Session?两者的区别等 但如果再往深入探讨的话,就慢慢有一些朋友不太了解了 ...

  4. [Bzoj5254][Fjwc2018]红绿灯(线段树)

    5254: [Fjwc2018]红绿灯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 31  Solved: 24[Submit][Status][D ...

  5. 【flyway】开源的数据库版本管理工具【migration】

    开源的数据库版本管理工具[migration] 记录

  6. 一次mysql优化经历

    某日运维突然说无线终端的频道页接口訪问量非常大,memcache缓存扛只是来.导致mysql并发查询量太大,导致server不停地宕机,仅仅能不停地重新启动机器.遗憾的是运维并没有告诉mysql查询量 ...

  7. IO模型:同步、异步、阻塞、非阻塞

    前言: 在Linux的网络编程中,同步IO(synchronous IO).异步IO(asynchronous IO).阻塞IO(blocking IO).非阻塞IO(non-blocking IO) ...

  8. 嵌入式学习笔记(综合提高篇 第二章) -- FreeRTOS的移植和应用

    1.1    资料准备和分析 上章节通过实现双机通讯,了解如何设计和实现自定义协议,不过对于嵌入式系统来说,当然不仅仅包含协议,还有其它很多需要深入学习了解的知识,下面将列出我在工作和学习上遇到的嵌入 ...

  9. 【微信支付】分享一个失败的案例 跨域405(Method Not Allowed)问题 关于IM的一些思考与实践 基于WebSocketSharp 的IM 简单实现 【css3】旋转倒计时 【Html5】-- 塔台管制 H5情景意识 --飞机 谈谈转行

    [微信支付]分享一个失败的案例 2018-06-04 08:24 by stoneniqiu, 2744 阅读, 29 评论, 收藏, 编辑 这个项目是去年做的,开始客户还在推广,几个月后发现服务器已 ...

  10. sublime 高速打开跳转至关联文件

    在下一枚web前端,近期在用sublime text2编辑器写前端.因为页面较多,项目较大,所以难免出现非常多引用文件和一些js的teample模板. 问题:在Sublime Text编写代码过程中要 ...