Codeforces-707D:Persistent Bookcase (离线处理特殊的可持久化问题&&Bitset)
Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.
After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.
The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1 to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.
Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:
- 1 i j — Place a book at position j at shelf i if there is no book at it.
- 2 i j — Remove the book from position j at shelf i if there is a book at it.
- 3 i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.
- 4 k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.
After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?
Input
The first line of the input contains three integers n, m and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.
The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.
It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.
Output
For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.
Example
2 3 3
1 1 1
3 2
4 0
1
4
0
4 2 6
3 2
2 2 2
3 3
3 2
2 2 2
3 2
2
1
3
3
2
4
2 2 2
3 2
2 2 1
2
1
Note
This image illustrates the second sample case.
题意:现在有一个N*M的书架,有Q个操作,对于每个操作,输入opt:
如果opt==1,那么输入x,y,如果第x行第y列无书,则放一本书。
如果opt==2,那么输入x,y,如果第x行第y列有书,则取走那本书。
如果opt==3,那么输入x,将第x行有书的取走,无书的位置放一本。
如果opt==4,那么输入k,表示把书架的情况恢复为第k次操作后的样貌,k在当前操作之前。
思路:初看可能是可持久化数据结构,但是注意到整体操作顺序为有根树,可以DFS回溯,对于书架上的情况,可以直接积累或者Bitset假设。
#include<bitset>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxn>s[maxn],P;
int N,M,Q;
int Laxt[maxm],Next[maxm],To[maxm],cnt;
int opt[maxm],x[maxm],y[maxm],ans[maxm];
void read(int &res)
{
char c=getchar(); res=;
for(;c>''||c<'';c=getchar());
for(;c<=''&&c>='';c=getchar()) res=(res<<)+(res<<)+c-'';
}
void add(int u,int v)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
}
void dfs(int u,int Now)
{
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(opt[v]==&&s[x[v]][y[v]]==) {
s[x[v]][y[v]]=;
ans[v]=Now+;
dfs(v,ans[v]);
s[x[v]][y[v]]=;
}
else if(opt[v]==&&s[x[v]][y[v]]==) {
s[x[v]][y[v]]=;
ans[v]=Now-;
dfs(v,ans[v]);
s[x[v]][y[v]]=;
}
else if(opt[v]==){
ans[v]=Now-s[x[v]].count();
s[x[v]]^=P;
ans[v]+=s[x[v]].count();
dfs(v,ans[v]);
s[x[v]]^=P;
}
else {
ans[v]=Now;
dfs(v,ans[v]);
}
}
}
int main()
{
read(N); read(M); read(Q);
for(int i=;i<=M;i++) P.set(i);
for(int i=;i<=Q;i++){
scanf("%d",&opt[i]);
if(opt[i]==||opt[i]==) read(x[i]),read(y[i]);
else read(x[i]);
if(opt[i]==) add(x[i],i);
else add(i-,i);
}
dfs(,);
for(int i=;i<=Q;i++) printf("%d\n",ans[i]);
return ;
}
Codeforces-707D:Persistent Bookcase (离线处理特殊的可持久化问题&&Bitset)的更多相关文章
- 【离线】【深搜】【树】Codeforces 707D Persistent Bookcase
题目链接: http://codeforces.com/problemset/problem/707/D 题目大意: 一个N*M的书架,支持4种操作 1.把(x,y)变为有书. 2.把(x,y)变为没 ...
- Codeforces 707D Persistent Bookcase(时间树)
[题目链接] http://codeforces.com/problemset/problem/707/D [题目大意] 给出一个矩阵,要求满足如下操作,单个位置x|=1或者x&=0,一行的数 ...
- CodeForces 707D Persistent Bookcase
$dfs$,优化. $return$操作说明该操作完成之后的状态和经过操作$k$之后的状态是一样的.因此我们可以建树,然后从根节点开始$dfs$一次(回溯的时候复原一下状态)就可以算出所有状态的答案. ...
- CodeForces 707D Persistent Bookcase ——(巧妙的dfs)
一个n*m的矩阵,有四种操作: 1.(i,j)处变1: 2.(i,j)处变0: 3.第i行的所有位置1,0反转: 4.回到第k次操作以后的状态: 问每次操作以后整个矩阵里面有多少个1. 其实不好处理的 ...
- Persistent Bookcase CodeForces - 707D (dfs 离线处理有根树模型的问题&&Bitset)
Persistent Bookcase CodeForces - 707D time limit per test 2 seconds memory limit per test 512 megaby ...
- Codeforces Round #368 (Div. 2) D. Persistent Bookcase 离线 暴力
D. Persistent Bookcase 题目连接: http://www.codeforces.com/contest/707/problem/D Description Recently in ...
- codeforces 707D D. Persistent Bookcase(dfs)
题目链接: D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input ...
- Codeforces Round #368 (Div. 2) D. Persistent Bookcase
Persistent Bookcase Problem Description: Recently in school Alina has learned what are the persisten ...
- CodeForces #368 div2 D Persistent Bookcase DFS
题目链接:D Persistent Bookcase 题意:有一个n*m的书架,开始是空的,现在有k种操作: 1 x y 这个位置如果没书,放书. 2 x y 这个位置如果有书,拿走. 3 x 反转这 ...
随机推荐
- android调用邮件应用发送email
直接贴代码: Intent intent = new Intent(android.content.Intent.ACTION_SEND); // 附件 File file = new File(En ...
- (11)UML设计视图
UML的词汇表包含三种构造块:事物.关系和图 事物:事物是对模型中最具有代表性的成分的抽象 关系:把事物结合在一起 图:图聚集了相关的事物 一.事物 UML中有4种事物 (1)结构事物 UML 模型中 ...
- python入门示例程序
该实例是raspi和dsp电机运动控制板的串口uart通信: import serial class SerialHandler(): ''' raspi serial for communicati ...
- 解决树莓派8G的SD卡只能识别3.3G,SD卡扩容
8GB microSD在Windows下使用Win32 Disk Imager下载映像后,在RPi中只能识别出3.3GB.而本身还有很多容量没有释放出来. 使用sudo raspi-config工具可 ...
- 【spring boot jpa】hql语句报错 :antlr.NoViableAltException: unexpected token: roleName
使用场景:在spring data jpa下使用@Query("hql语句") 然后在项目启动的时候报错 hql语句报错:antlr.NoViableAltException: u ...
- BUPT复试专题—树查找(2011)
https://www.nowcoder.com/practice/9a10d5e7d99c45e2a462644d46c428e4?tpId=67&tqId=29641&rp=0&a ...
- Dynamics CRM 2015中的SSRS Report集成配置
大家应该都知道.Dynamics CRM能集成SSRS Report,而且我也在之前的博文中讨论过怎样制作一个简单的SSRS Report并部署到Dynamics CRM中.今天我们来看看一些比較有用 ...
- angularJS---自己定义过滤器
AngularJS还有一个特点就是提供了过滤器.能够通过操作UNIX下管道的方式,操作数据结果. 通过使用管道.能够便于双向的数据绑定中视图的展现. 过滤器在处理过程中,将数据变成新的格式.并且能够使 ...
- hiho1079 线段树区间改动离散化
题目链接: hihocoder1079 代码: #include<iostream> #include<cstdio> #include<cstring> #inc ...
- Jquery根据name取得所有选中的Checkbox值
var spCodesTemp = ""; $('input:checkbox[name=supNO]:checked').each(function (i) ...