一.疑问

这几天一直纠结于一个问题:

同样的代码,为什么在keras的0.3.3版本中,拟合得比较好,也没有过拟合,验证集准确率一直高于训练准确率. 但是在换到keras的1.2.0版本中的时候,就过拟合了,验证误差一直高于训练误差

二.答案

今天终于发现原因了,原来是这两个版本的keras的optimezer实现不一样,但是它们的默认参数是一样的,因为我代码中用的是adam方法优化,下面就以optimezer中的adam来举例说明:

1.下面是keras==0.3.3时,其中optimezer.py中的adam方法实现:

 class Adam(Optimizer):
'''Adam optimizer. Default parameters follow those provided in the original paper. # Arguments
lr: float >= . Learning rate.
beta_1/beta_2: floats, < beta < . Generally close to .
epsilon: float >= . Fuzz factor. # References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
'''
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-,
*args, **kwargs):
super(Adam, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable()
self.lr = K.variable(lr)
self.beta_1 = K.variable(beta_1)
self.beta_2 = K.variable(beta_2) def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [(self.iterations, self.iterations+.)] t = self.iterations +
lr_t = self.lr * K.sqrt( - K.pow(self.beta_2, t)) / ( - K.pow(self.beta_1, t)) for p, g, c in zip(params, grads, constraints):
# zero init of moment
m = K.variable(np.zeros(K.get_value(p).shape))
# zero init of velocity
v = K.variable(np.zeros(K.get_value(p).shape)) m_t = (self.beta_1 * m) + ( - self.beta_1) * g
v_t = (self.beta_2 * v) + ( - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append((m, m_t))
self.updates.append((v, v_t))
self.updates.append((p, c(p_t))) # apply constraints
return self.updates def get_config(self):
return {"name": self.__class__.__name__,
"lr": float(K.get_value(self.lr)),
"beta_1": float(K.get_value(self.beta_1)),
"beta_2": float(K.get_value(self.beta_2)),
"epsilon": self.epsilon}

2.下面是keras==1.2.0时,其中optimezer.py中的adam方法实现:

 class Adam(Optimizer):
'''Adam optimizer. Default parameters follow those provided in the original paper. # Arguments
lr: float >= . Learning rate.
beta_1/beta_2: floats, < beta < . Generally close to .
epsilon: float >= . Fuzz factor. # References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
'''
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=1e-, decay=., **kwargs):
super(Adam, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable()
self.lr = K.variable(lr)
self.beta_1 = K.variable(beta_1)
self.beta_2 = K.variable(beta_2)
self.decay = K.variable(decay)
self.inital_decay = decay def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, )] lr = self.lr
if self.inital_decay > :
lr *= (. / (. + self.decay * self.iterations)) t = self.iterations +
lr_t = lr * K.sqrt(. - K.pow(self.beta_2, t)) / (. - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (. - self.beta_1) * g
v_t = (self.beta_2 * v) + (. - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t)) new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon}
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

读代码对比,可发现这两者实现方式有不同,而我的代码中一直使用的是adam的默认参数,所以才会结果不一样.

三.解决

要避免这一问题可用以下方法:

1.在自己的代码中,要对优化器的参数给定,不要用默认参数.

adam = optimizers.Adam(lr=1e-)

但是,在keras官方文档中,明确有说明,在用这些优化器的时候,最好使用默认参数,所以也可采用第2种方法.

2.优化函数中的优化方法要给定,也就是在训练的时候,在fit函数中的callbacks参数中的schedule要给定.

比如:

 # Callback that implements learning rate schedule
schedule = Step([], [1e-, 1e-]) history = model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test,Y_test),
callbacks=[
schedule,
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=,save_best_only=True, mode='auto')# 该回调函数将在每个epoch后保存模型到filepath
# ,keras.callbacks.EarlyStopping(monitor='val_loss', patience=, verbose=, mode='auto')# 当监测值不再改善时,该回调函数将中止训练.当early stop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练
],
verbose=, shuffle=True)

其中Step函数如下:

 class Step(Callback):

     def __init__(self, steps, learning_rates, verbose=):
self.steps = steps
self.lr = learning_rates
self.verbose = verbose def change_lr(self, new_lr):
old_lr = K.get_value(self.model.optimizer.lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose == :
print('Learning rate is %g' %new_lr) def on_epoch_begin(self, epoch, logs={}):
for i, step in enumerate(self.steps):
if epoch < step:
self.change_lr(self.lr[i])
return
self.change_lr(self.lr[i+]) def get_config(self):
config = {'class': type(self).__name__,
'steps': self.steps,
'learning_rates': self.lr,
'verbose': self.verbose}
return config @classmethod
def from_config(cls, config):
offset = config.get('epoch_offset', )
steps = [step - offset for step in config['steps']]
return cls(steps, config['learning_rates'],
verbose=config.get('verbose', ))

Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结的更多相关文章

  1. Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题

    一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...

  2. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  3. Top Deep Learning Projects in github

    Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by sta ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  6. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

    https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一 ...

  7. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  8. Unsupervised Feature Learning and Deep Learning(UFLDL) Exercise 总结

    7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到 ...

  9. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

随机推荐

  1. BZOJ 1095 [ZJOI2007]Hide 捉迷藏 ——动态点分治

    [题目分析] 这题好基啊. 先把分治树搞出来.然后每个节点两个堆. 第一个堆保存这个块里的所有点(即分治树中的所有儿子)到分治树上的父亲的距离. 第二个堆保存分治树子树中所有儿子第一个堆的最大值. 建 ...

  2. 2013   Dhaka 区域赛

    A.uva 12709 Falling ANTS 首先按照H排序,然后按照L*H*W排序 #include<iostream> #include<cstdio> #includ ...

  3. kali 1.1.0 boot failed

    从几个月前的14.10 daily 版本就有U盘刻录无法启动的现象,相关bug可参见:         https://bugs.launchpad.net/ubunt ... reator/+bug ...

  4. android的系统学习

    先从Android的应用开发开始,等到对应用掌握的比较熟悉了,开始慢慢阅读一些Android 应用框架层的源代码,然后再渐渐往下去了解Android的JNI.Libraries.Dalvik虚拟机.H ...

  5. 关于xshell无法连接到centos的问题

    1.xshell无法连接到centos:拒绝连接(无线网) 在xshell ping centos出现: 解决方法: 1. 2.重启下网卡: [root@localhost ~]# /etc/init ...

  6. 洛谷 P1503鬼子进村

    题目背景 小卡正在新家的客厅中看电视.电视里正在播放放了千八百次依旧重播的<亮剑>,剧中李云龙带领的独立团在一个县城遇到了一个鬼子小队,于是独立团与鬼子展开游击战. 题目描述 描述 县城里 ...

  7. Spring框架 JdbcTemplate类 @Junit单元测试,可以让方法独立执行 如:@Test

    package cn.zmh.PingCe; import org.junit.Test; import org.springframework.jdbc.core.BeanPropertyRowMa ...

  8. Unix操作系统LD_PRELOAD简介

    http://blog.csdn.net/ieearth/article/details/49952047 Unix操作系统的动态链接库的知识中,这个功能主要就是用来有选择性的载入Unix操作系统不同 ...

  9. Vue.js组件的通信之子组件向父组件的通信

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. sklearn 特征选择

    1.移除低方差的特征(Removing features with low variance) VarianceThreshold 是特征选择中的一项基本方法.它会移除所有方差不满足阈值的特征.默认设 ...