题目链接:http://poj.org/problem?id=3045

Cow Acrobats
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5713   Accepted: 2151

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

Source

 
 
 
题解:
2.自己的思考:根据承受力来排序,体重可能会走向极端;根据体重来排序,承受力也可能会走向极端。所以片面的考虑是得不到结果的(做题都能映射出人生,还能说些什么),既然体重和承受力共同影响这结果,所以就需要综合两者来考虑,即两者之和。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; struct node
{
int w, s;
bool operator<(const node &x)const{
return (w+s)<(x.w+x.s);
}
}a[MAXN]; int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i<=n; i++)
scanf("%d%d", &a[i].w, &a[i].s);
sort(a+, a++n);
LL ans = -INF, tot = ;
for(int i = ; i<=n; i++)
{
ans = max(ans, tot-a[i].s);
tot += a[i].w;
}
printf("%lld\n", ans);
}
}

POJ3045 Cow Acrobats —— 思维证明的更多相关文章

  1. poj3045 Cow Acrobats (思维,贪心)

    题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...

  2. POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4998   Accepted: 1892 Desc ...

  3. POJ-3045 Cow Acrobats (C++ 贪心)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  4. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  5. poj3045 Cow Acrobats(二分最大化最小值)

    https://vjudge.net/problem/POJ-3045 读题后提取到一点:例如对最底层的牛来说,它的崩溃风险=所有牛的重量-(底层牛的w+s),则w+s越大,越在底层. 注意范围lb= ...

  6. POJ3045 Cow Acrobats

    题意 Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join t ...

  7. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  8. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  9. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

随机推荐

  1. GFS, HDFS, Blob File System架构对比

    分布式文件系统很多,包括GFS,HDFS,淘宝开源的TFS,Tencent用于相册存储的TFS (Tencent FS,为了便于区别,后续称为QFS),以及Facebook Haystack.其中,T ...

  2. Spring-IOC源码解读3-依赖注入

    当容器已经载入了BeanDefinition的信息完成了初始化,我们继续分析依赖注入的原理,需要注意的是依赖注入是用户第一次向IOC容器获取Bean的时候发生的,这里有个例外,那就是如果用户在Bean ...

  3. php那些坑

    1.创建数组不是new array(),是$aaa=array(),没有new,数组可以传入键值$aaa=array("key"=>"value"); 2 ...

  4. 关于制表符\t

    “制表符代表八个空格”的说法不准确.制表符的作用是将光标移到最接近8的倍数的位置,使得后面的输出从此开始.换句话说,如果所有数据都紧跟在制表符后面输出,则这些数据只能从第9列.第17列.第25列... ...

  5. Laravel 数据库操作之Eloquent ORM模型

    //模型中的相关代码 namespace App; use Illuminate\Database\Eloquent\Model; class Student extends Model{ //默认对 ...

  6. (12)java -IDEA使用

    一. 引入jar包 1. 2.

  7. python type()函数

    我怎么把一个变量的类型写入文件?a = 3type(a)貌似返回的是type类型,不能打印,也不能用文件的write怎么半,或者怎么转换成srt之类的? type()函数得到的是一个类型而不是字符串, ...

  8. ftrace 详解

    http://www.ibm.com/developerworks/cn/linux/l-cn-ftrace/ http://www.ibm.com/developerworks/cn/linux/l ...

  9. android 获得屏幕宽度和高度

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools= ...

  10. Setup and Teardown Thread Group in Jmeter

    setup和teardown有点类似于每个测试用例开始和结束时要做的动作 A Thread Group is the starting point of any Jmeter Test Plan. A ...