Intersecting Lines
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9360   Accepted: 4210

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.  Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
};
struct Line{
Point a,b;
}; typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-10; int dcmp(double x)
{
if(fabs(x)<eps) return 0;
else return x<0?-1:1;
} bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0);
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
//两向量的夹角
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积 Point GetLineIntersection(Point p,Vector v,Point q,Vector w)
{
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
double DistanceToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
void judge(Line a,Line b)
{
Point p;
if(dcmp(Cross(a.a-a.b,b.a-b.b)) == 0)
{
if(dcmp(DistanceToLine(b.a,a.a,a.b)) == 0)
{
printf("LINE\n");return ;
}
else
{
printf("NONE\n");return ;
}
}
else
{
p=GetLineIntersection(a.a,a.a-a.b,b.a,b.a-b.b);
printf("POINT %.2lf %.2lf\n",p.x,p.y);
return ;
}
}
int main()
{
int n,i;
Line L1,L2;
while(~scanf("%d",&n))
{
printf("INTERSECTING LINES OUTPUT\n");
for(i=0;i < n;i++)
{
scanf("%lf %lf %lf %lf",&L1.a.x,&L1.a.y,&L1.b.x,&L1.b.y);
scanf("%lf %lf %lf %lf",&L2.a.x,&L2.a.y,&L2.b.x,&L2.b.y);
judge(L1,L2);
}
printf("END OF OUTPUT\n");
}
return 0;
}

poj 1269 直线间的关系的更多相关文章

  1. POJ 1269 (直线求交)

    Problem Intersecting Lines (POJ 1269) 题目大意 给定两条直线,问两条直线是否重合,是否平行,或求出交点. 解题分析 主要用叉积做,可以避免斜率被0除的情况. 求交 ...

  2. POJ 1269 (直线相交) Intersecting Lines

    水题,以前总结的模板还是很好用的. #include <cstdio> #include <cmath> using namespace std; ; int dcmp(dou ...

  3. POJ 1269 - Intersecting Lines 直线与直线相交

    题意:    判断直线间位置关系: 相交,平行,重合 include <iostream> #include <cstdio> using namespace std; str ...

  4. 判断两条直线的位置关系 POJ 1269 Intersecting Lines

    两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...

  5. POJ 1269 Intersecting Lines (判断直线位置关系)

    题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...

  6. POJ 1269 Intersecting Lines(判断两直线位置关系)

    题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...

  7. poj 1269 判断直线的位置关系

    题目链接 题意 判断两条直线的位置关系,重合/平行/相交(求交点). 直线以其上两点的形式给出(点坐标为整点). 思路 写出直线的一般式方程(用\(gcd\)化为最简), 计算\(\begin{vma ...

  8. POJ 1269 /// 判断两条直线的位置关系

    题目大意: t个测试用例 每次给出一对直线的两点 判断直线的相对关系 平行输出NODE 重合输出LINE 相交输出POINT和交点坐标 1.直线平行 两向量叉积为0 2.求两直线ab与cd交点 设直线 ...

  9. 直线相交 POJ 1269

    // 直线相交 POJ 1269 // #include <bits/stdc++.h> #include <iostream> #include <cstdio> ...

随机推荐

  1. codevs 1131 统计单词数 2011年NOIP全国联赛普及组

     时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位 ...

  2. Lesson1

    #ifdef __cplusplus #include <cstdlib> #else #include <stdlib.h> #endif #include <SDL/ ...

  3. SSave ALAsset image to disk fast on iOS

    I am using ALAsset to retrieve images like that: [[asset defaultRepresentation] fullResolutionImage] ...

  4. 特别困的学生 UVa12108(模拟题)

    一.题目 课堂上有n个学生(n<=10).每个学生都有一个“睡眠-清醒”周期,其中第i个学生醒Ai分钟后睡Bi分钟,然后重复(1<=Ai,Bi<=5),初始第i个同学处于他的周期的C ...

  5. QT +自定义控件-spin+slider

    动手实现自定义控件: 1.首先在ui界面中添加一个(Widget)容器类.如图中的1所示 2.在项目中添加一个SmallWidget类,如下: 3.接着在程序编辑界面进行程序编辑如下: #includ ...

  6. [LUOGU] P3128 [USACO15DEC]最大流Max Flow

    题意:一棵树,多次给指定链上的节点加1,问最大节点权值 n个点,n-1条边很容易惯性想成一条链,幸好有样例.. 简单的树剖即可!(划去) 正常思路是树上差分,毕竟它就询问一次.. #include&l ...

  7. 八:SQL之DQL数据查询语言单表操作

    前言: DQL数据库查询语言是我们在开发中最常使用的SQL,这一章总结了单表操作部分的常用查询方式 主要操作有:查询所有字段.查询指定字段.查询指定记录.带IN的关键字查询,范围查询,陪查询.查询空值 ...

  8. Kali入门配置使用(一)

    一.Kali简介 1.1.相关连接 Kali百度百科:https://baike.baidu.com/item/Kali%20linux/8305689?fr=aladdin Kali wiki:ht ...

  9. 如何删除SQL Server 2014连接到服务器中的服务器名称

    查看了网上的一些方法,均是以前版本的处理方法,不过原理都是删除"SqlStudio.bin",通过“Everything”搜索SqlStudio.bin,位置是: C:\Users ...

  10. Python语言程序设计之三--列表List常见操作和错误总结

    最近在学习列表,在这里卡住了很久,主要是课后习题太多,而且难度也不小.像我看的这本<Python语言程序设计>--梁勇著,列表和多维列表两章课后习题就有93道之多.我的天!但是题目出的非常 ...