P4284 [SHOI2014]概率充电器 dp
这个题题干说的不清楚,一开始我以为只能是旁边紧挨着的传火,导致我一开始根本不知道哪错了。后来,我想到树形dp,但是需要正反考虑,()既要考虑父亲,又要考虑儿子),互相都有影响,所以没太想出来。后来知道两遍就行了,一遍考虑儿子,一遍考虑父亲,然后相乘就行了。
题干:
题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!” SHOI 概率充电器由n- 条导线连通了n 个充电元件。进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决定。随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行 间接充电。 作为SHOI 公司的忠实客户,你无法抑制自己购买SHOI 产品的冲动。在排 了一个星期的长队之后终于入手了最新型号的SHOI 概率充电器。你迫不及待 地将SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件 个数的期望是多少呢?
输入输出格式
输入格式: 第一行一个整数:n。概率充电器的充电元件个数。充电元件由1-n 编号。 之后的n- 行每行三个整数a, b, p,描述了一根导线连接了编号为a 和b 的 充电元件,通电概率为p%。 第n+ 行n 个整数:qi。表示i 号元件直接充电的概率为qi%。 输出格式: 输出一行一个实数,为能进入充电状态的元件个数的期望,四舍五入到小 数点后6 位小数。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;++i)
#define lv(i,a,n) for(register int i = a;i >= n;--i)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const int N = 5e5 + ;
struct node
{
int l,r,nxt;
db w;
}a[N << ];
int n,lst[N],len = ;
int fa[N];
db q[N],g[N],f[N],p[N];
void add(int x,int y,db w)
{
a[++len].l = x;
a[len].r = y;
a[len].w = w;
a[len].nxt = lst[x];
lst[x] = len;
}
void dfs(int u,int fat)
{
fa[u] = fat;
f[u] = - q[u];
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fat) continue;
dfs(y,u);
f[u] *= (f[y] + ( - f[y]) * ( - a[k].w));
}
}
void solve(int u)
{
if(u == )
{
g[u] = ;
}
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fa[u]) continue;
db P = g[u] * f[u] / (f[y] + ( - f[y]) * ( - a[k].w));
g[y] = P + ( - P) * ( - a[k].w);
solve(y);
}
}
int main()
{
read(n);
duke(i,,n - )
{
int x,y,k;
read(x);read(y);read(k);
add(x,y,(db)k / (db));
add(y,x,(db)k / (db));
}
duke(i,,n)
{
int x;
read(x);
q[i] = (db)x / (db);
}
dfs(,);
solve();
duke(i,,n)
{
p[i] = - f[i] * g[i];
}
db ans = ;
duke(i,,n)
{
ans += p[i];
}
printf("%.6lf\n",ans);
return ;
}
P4284 [SHOI2014]概率充电器 dp的更多相关文章
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
- 洛谷 P4284 [SHOI2014]概率充电器 解题报告
P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- P4284 [SHOI2014]概率充电器
P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...
- luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 【题解】Luogu P4284 [SHOI2014]概率充电器
原题传送门 我们知道,每个电器充电对充电电器数的贡献都是相等的1,所以若第\(i\)个电器有\(p_i\)的概率充电时 \[E=\sum_{i=1}^np_i\] 我们考虑如何求\(p_i\),根据树 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
随机推荐
- [转]GitHub 优秀的 Android 开源项目
GitHub 优秀的 Android 开源项目 主要介绍那些不错个性化的View,包括ListView.ActionBar.Menu.ViewPager.Gallery.GridView.ImageV ...
- MySQL Slow Log慢日志分析【转】
如果你的MySQL出现了性能问题,第一个需要“诊断”的就是slow log(慢日志)了. slow log文件很小,使用more less等命令就足够了.如果slow log很大怎么办?这里介绍MyS ...
- WordPress 权限方案
每个主机和主机的情况可能有所差异,如下只是概括性地描述,并不一定适用于所有情况.它只适用于进行“常规设置”的情况(注:比如通过“suexec”方式来进行共享主机的,详情见下方) 通常,所有文件是由您的 ...
- 从零开始写STL—set/map
这一部分只要把搜索树中暴露的接口封装一下,做一些改动. set源码剖析 template<typename T> class set { public: typedef T key_typ ...
- SOJ 4482 忽悠大神【最小生成树】
题目链接: http://acm.scu.edu.cn/soj/problem.action?id=4482 题意: 给定边权和点权,从一个点出发并回到该点,减少尽量多的边,每路过点和边都要把权重加到 ...
- MySQL中的数据类型的长度范围和显示宽度(转)
长度范围是随数据类型就已经是固定的值,而显示宽度与长度范围无关. 以下是每个整数类型的存储和范围(来自MySQL手册) 类型 字节 最小值 最大值 (带符号的/无符号的) (带符号的/无符号的) TI ...
- Spring中使用Log4j记录日志
以下内容引用自http://wiki.jikexueyuan.com/project/spring/logging-with-log4j.html: 例子: pom.xml: <project ...
- TList实现的任务队列
TList实现的任务队列 var g_tasks: TList; type PTRecvPack = ^TRecvPack; TRecvPack = record // 接收到的原数据 socket: ...
- Java 8 中的 java.util.Optional
Java 8 中的 java.util.Optional 学习了:https://blog.csdn.net/sun_promise/article/details/51362838 package ...
- 一处折腾笔记:Android内嵌html5加入原生微信分享的解决的方法
有一段时间没有瞎折腾了. 这周一刚上班萌主过来反映说:微信里面打开聚客宝.分享功能是能够的(这里是用微信自身的js-sdk实现的).可是在android应用里面打开点击就没反应了:接下来狡猾的丁丁在产 ...