P4284 [SHOI2014]概率充电器 dp
这个题题干说的不清楚,一开始我以为只能是旁边紧挨着的传火,导致我一开始根本不知道哪错了。后来,我想到树形dp,但是需要正反考虑,()既要考虑父亲,又要考虑儿子),互相都有影响,所以没太想出来。后来知道两遍就行了,一遍考虑儿子,一遍考虑父亲,然后相乘就行了。
题干:
题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!” SHOI 概率充电器由n- 条导线连通了n 个充电元件。进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决定。随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行 间接充电。 作为SHOI 公司的忠实客户,你无法抑制自己购买SHOI 产品的冲动。在排 了一个星期的长队之后终于入手了最新型号的SHOI 概率充电器。你迫不及待 地将SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件 个数的期望是多少呢?
输入输出格式
输入格式: 第一行一个整数:n。概率充电器的充电元件个数。充电元件由1-n 编号。 之后的n- 行每行三个整数a, b, p,描述了一根导线连接了编号为a 和b 的 充电元件,通电概率为p%。 第n+ 行n 个整数:qi。表示i 号元件直接充电的概率为qi%。 输出格式: 输出一行一个实数,为能进入充电状态的元件个数的期望,四舍五入到小 数点后6 位小数。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;++i)
#define lv(i,a,n) for(register int i = a;i >= n;--i)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const int N = 5e5 + ;
struct node
{
int l,r,nxt;
db w;
}a[N << ];
int n,lst[N],len = ;
int fa[N];
db q[N],g[N],f[N],p[N];
void add(int x,int y,db w)
{
a[++len].l = x;
a[len].r = y;
a[len].w = w;
a[len].nxt = lst[x];
lst[x] = len;
}
void dfs(int u,int fat)
{
fa[u] = fat;
f[u] = - q[u];
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fat) continue;
dfs(y,u);
f[u] *= (f[y] + ( - f[y]) * ( - a[k].w));
}
}
void solve(int u)
{
if(u == )
{
g[u] = ;
}
for(int k = lst[u];k;k = a[k].nxt)
{
int y = a[k].r;
if(y == fa[u]) continue;
db P = g[u] * f[u] / (f[y] + ( - f[y]) * ( - a[k].w));
g[y] = P + ( - P) * ( - a[k].w);
solve(y);
}
}
int main()
{
read(n);
duke(i,,n - )
{
int x,y,k;
read(x);read(y);read(k);
add(x,y,(db)k / (db));
add(y,x,(db)k / (db));
}
duke(i,,n)
{
int x;
read(x);
q[i] = (db)x / (db);
}
dfs(,);
solve();
duke(i,,n)
{
p[i] = - f[i] * g[i];
}
db ans = ;
duke(i,,n)
{
ans += p[i];
}
printf("%.6lf\n",ans);
return ;
}
P4284 [SHOI2014]概率充电器 dp的更多相关文章
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
- 洛谷 P4284 [SHOI2014]概率充电器 解题报告
P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- P4284 [SHOI2014]概率充电器
P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...
- luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 【题解】Luogu P4284 [SHOI2014]概率充电器
原题传送门 我们知道,每个电器充电对充电电器数的贡献都是相等的1,所以若第\(i\)个电器有\(p_i\)的概率充电时 \[E=\sum_{i=1}^np_i\] 我们考虑如何求\(p_i\),根据树 ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
随机推荐
- Divide Groups(分组)(二分图染色)
题目链接 题目大意是说输入数字n 然后告诉你第i个人都认识谁? 让你把这些人分成两堆,使这每个堆里的人都互相认识. 做法:把不是互相认识的人建立一条边,则构建二分图,两堆的人肯定都互相认识,也就是说, ...
- bzoj1004 [HNOI2008]Cards 置换群+背包
[bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...
- Codeforces917D. Stranger Trees
$n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的 ...
- HDU 6437 最(大) 小费用最大流
Problem L.Videos Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Other ...
- Reverse Nodes in k-Group (链表)
Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. If ...
- Spring Data JPA 入门篇
Spring Data JPA是什么 它是Spring基于ORM框架(如hibernate,Mybatis等).JPA规范(Java Persistence API)封装的一套 JPA应用框架,可使开 ...
- java . 请在小于99999的正整数中找符合下列条件的数,它既是完全平方数,又有两位数字相同,如:144,676。
import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; //请在小于99999的正整数中找符合下列条件的 ...
- how to read openstack code: Core plugin and resource extension
本章我们将写一个自己的core plugin 和一个resource extension来加深理解.(阅读本文的前提是你已经理解了restful以及stevedore等内容) 什么是 core plu ...
- 基于unicorn-engine的虚拟机的实现(WxSpectre)
反病毒虚拟机是一个很有优势的工具,可以说反病毒软件是否存在模拟器是衡量反病毒软件能力的一个指标.反病毒虚拟机不光是内嵌在反病毒软件内部,来动态执行样本.这种虚拟机一般也可以单独用来动态执行批量样本,检 ...
- 利用NSA的MS17-010漏洞利用工具实现Win 7和Win Server 2008系统入侵
影子经纪人(Shadow Brokers)最近陆续曝光的NSA网络武器令人震惊,尽管这些工具是否出自国家级别黑客团队之手尚不清楚,但至少存在一个可以说明问题的事实:这些漏洞利用工具都能有效运行,且具有 ...