洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301
https://www.luogu.org/problemnew/show/P3455
就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2了,升级版的整除分块,可以两个变量一起搞
预处理莫比乌斯函数的前缀和之后就可以每次$O(\sqrt{n}+\sqrt{m})$回答
那篇题解里面用了一个技巧:${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}={\lfloor}\frac{a}{bc}{\rfloor}$
(当然a,b,c都为正整数)
证了好久。。。
这么证:
设${\lfloor}\frac{a}{bc}{\rfloor}=p$,则p为整数,且$p<=\frac{a}{bc}<p+1$
则$pc<=\frac{a}{b}<pc+c$
而$pc$与$pc+c$都为整数
因此$pc<={\lfloor}\frac{a}{b}{\rfloor}<pc+c$
所以$p<=\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}<p+1$
所以${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}=p={\lfloor}\frac{a}{bc}{\rfloor}$
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k,ans,ed;
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld",&n,&m,&k);n/=k;m/=k;
ans=;
if(n>m) swap(n,m);
for(i=;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
https://www.luogu.org/problemnew/show/P2522
https://www.lydsy.com/JudgeOnline/problem.php?id=2301
这题基本一样的,就是加个容斥。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 50100
ll prime[N+],len,mu[N+],dd[N+];
bool nprime[N+];
ll a,c,n,m,k;
ll calc(ll n,ll m)
{
if(n==||m==) return ;
ll ans=;
if(n>m) swap(n,m);
n/=k;m/=k;
for(ll i=,j;i<=n;i=j+)
{
j=min(n,min(n/(n/i),m/(m/i)));
ans+=(dd[j]-dd[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
ll i,j,T,TT;
mu[]=;
for(i=;i<=N;i++)
{
if(!nprime[i]) prime[++len]=i,mu[i]=-;
for(j=;j<=len&&i*prime[j]<=N;j++)
{
nprime[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(i=;i<=N;i++) dd[i]=dd[i-]+mu[i];
scanf("%lld",&T);
for(TT=;TT<=T;TT++)
{
scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
printf("%lld\n",calc(n,m)-calc(a-,m)-calc(n,c-)+calc(a-,c-));
}
return ;
}
洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301的更多相关文章
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...
- 【刷题】洛谷 P3455 [POI2007]ZAP-Queries
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...
- 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...
- 洛谷P3455 [POI2007]ZAP-Queries
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...
- 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
随机推荐
- 【C语言】统计数字在排序数组中出现的次数
//数字在排序数组中出现的次数. //统计一个数字在排序数组中出现的次数.比如:排序数组{1,2,3,3,3,3,4,5}和数字3,因为3出现了4次,因此输出4. #include <stdio ...
- spring MVC (学习笔记)
web.xml 相关配置 <?xml version="1.0" encoding="UTF-8"?><web-app xmlns=" ...
- springboot对传参的拦截统一处理
在学习某网<java秒杀系统方案优化>的课程中,学到了一种springboot对传参的拦截统一处理的方式,特记录一下. 如后台方法一般需要根据token从Session中获取User对象, ...
- 一个实用的UIView的类别
// // FrameAccessor.h // FrameAccessor // // Created by Alex Denisov on 18.03.12. // Copyright (c) 2 ...
- mysql 中varchar(50)最多能存多少个汉字
首先要确定mysql版本4.0版本以下,varchar(50),指的是50字节,如果存放UTF8汉字时,只能存16个(每个汉字3字节) 5.0版本以上,varchar(50),指的是50字符,无论存放 ...
- 概率dp集合
bzoj1076 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后 ...
- bootstrap的学习注意点
1.bootstrop里面所有的内容都需要用一个container 容器包裹起来: 2.一屏二屏什么的,是通过id 与href实现的: 3.下拉与菜单之类的都有固定的代码: 4.需要修改相关属性的话, ...
- linq to xml There are multiple root elements.
添加xml结点的时候 var temp2 = temp1.Element("staticContent"); if (temp2 != null) { string str = & ...
- DEDE自定义表单显示提交时间|添加提交时间,获取ip的方法
前提是后台自定义表单字段一定要有 “时间”,这里的acca_time <div class="tit">*咨询内容:</div> <div clas ...
- 集合框架、泛型、迭代(java基础知识十六)
1.ArrayList存储自定义对象并遍历 此类的 iterator 和 listIterator 方法返回的迭代器是快速失败的:在创建迭代器之后,除非通过迭代器自身的 remove 或 add 方法 ...