DFS HDOJ 5348 Ponds
题意:有一张无向图,度数小于2的点会被去掉,直到全都大于等于2,问连通块顶点数为奇数的权值和为多少
分析:首先DFS把度数小于2的vis掉,第二次DFS把属于同一个连通块的vis掉,检查是否为奇数个定点,是累加和。用sz[i]表示i点真实还连着的点的个数
代码:
/************************************************
* Author :Running_Time
* Created Time :2015/9/13 星期日 15:34:01
* File Name :B.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e4 + 10;
const int E = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
vector<int> G[N];
int a[N], sz[N];
bool vis[N];
int n, m, cnt;
ll sum; void init(void) {
for (int i=1; i<=n; ++i) G[i].clear ();
memset (vis, false, sizeof (vis));
} void DFS(int u) {
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (vis[v]) continue;
sz[v]--;
if (sz[v] <= 1) {
vis[v] = true; DFS (v);
}
}
} void DFS2(int u) {
sum += a[u]; cnt++;
for (int i=0; i<G[u].size (); ++i) {
int v = G[u][i];
if (vis[v]) continue;
vis[v] = true; DFS2 (v);
}
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d%d", &n, &m);
init ();
for (int i=1; i<=n; ++i) scanf ("%d", &a[i]);
for (int u, v, i=1; i<=m; ++i) {
scanf ("%d%d", &u, &v);
G[u].push_back (v); G[v].push_back (u);
}
for (int i=1; i<=n; ++i) sz[i] = G[i].size ();
for (int i=1; i<=n; ++i) {
if (vis[i]) continue;
if (sz[i] <= 1) {
vis[i] = true; DFS (i);
}
}
ll ans = 0;
for (int i=1; i<=n; ++i) {
if (vis[i]) continue;
sum = 0; cnt = 0;
vis[i] = true; DFS2 (i);
if (cnt & 1) ans += sum;
}
printf ("%I64d\n", ans);
} return 0;
}
DFS HDOJ 5348 Ponds的更多相关文章
- 图论 HDOJ 5348 MZL's endless loop
题目传送门 /* 题意:给一个n个点,m条边的无向图,要求给m条边定方向,使得每个定点的出入度之差的绝对值小于等于1. 输出任意一种结果 图论:一个图,必定存在偶数个奇度顶点.那么从一个奇度定点深搜, ...
- DFS HDOJ 2614 Beat
题目传送门 /* 题意:处理完i问题后去处理j问题,要满足a[i][j] <= a[j][k],问最多能有多少问题可以解决 DFS简单题:以每次处理的问题作为过程(即行数),最多能解决n个问题, ...
- DFS HDOJ 2181 哈密顿绕行世界问题
题目传送门 题意:中文题面 分析:直接排完序后DFS.这样的题以后不应该再写题解的. #include <bits/stdc++.h> using namespace std; vecto ...
- 拓扑排序/DFS HDOJ 4324 Triangle LOVE
题目传送门 题意:判三角恋(三元环).如果A喜欢B,那么B一定不喜欢A,任意两人一定有关系连接 分析:正解应该是拓扑排序判环,如果有环,一定是三元环,证明. DFS:从任意一点开始搜索,搜索过的点标记 ...
- HDOJ(HDU).2266 How Many Equations Can You Find (DFS)
HDOJ(HDU).2266 How Many Equations Can You Find (DFS) [从零开始DFS(9)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零 ...
- HDOJ(HDU).1045 Fire Net (DFS)
HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...
- HDOJ(HDU).1258 Sum It Up (DFS)
HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...
- HDOJ(HDU).1241 Oil Deposits(DFS)
HDOJ(HDU).1241 Oil Deposits(DFS) [从零开始DFS(5)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...
- HDOJ(HDU).1035 Robot Motion (DFS)
HDOJ(HDU).1035 Robot Motion [从零开始DFS(4)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DF ...
随机推荐
- sanic官方文档解析之Response和Cookie
1,Sanic的返回的响应体 使用Sanic中的response模块去创建响应对象 返回文本response.text文本(直接字符串就ok) 返回html文件,直接response.html文件(类 ...
- HDU 6125 Free from square 状态压缩DP + 分组背包
Free from square Problem Description There is a set including all positive integers that are not mor ...
- 2017 Multi-University Training Contest - Team 1 (5/12)
官方题解 1001. Add More Zero #pragma comment(linker, "/STACK:1024000000,1024000000") #include& ...
- 通过定时任务 bash 脚本 控制 进程 的 执行时间
通过定时任务 bash 脚本 控制 进程 的 执行时间
- 使用iconv的包装类CharsetConverter进行编码转换的示例
GitHub地址https://github.com/BuYishi/charset_converter_test charset_converter_test.cpp #include <io ...
- Android中的ProgressBar的android:indeterminate
不明确(false)就是滚动条的当前值自动在最小到最大值之间来回移动,形成这样一个动画效果,这个只是告诉别人“我正在工作”,但不能提示工作进度到哪个阶段.主要是在进行一些无法确定操作时间的任务时作为提 ...
- 用mkdirs创建目录
import java.io.*; class a { public static void main(String args[]) { createDir("c:/fuck"); ...
- Ubuntu 12.04 nethogs 流量监控查看
/*************************************************************** * Ubuntu 12.04 流量监控查看 * 说明: * 今天打算从 ...
- NSArray是强引用容器
经常比较疑惑NSArray.NSDictionary.NSSet这几个对象容器管理对象所采用的方式是“强引用”还是“弱引用”. 通过简单的命令行程序得到的结论是“NSArray.NSDictionar ...
- Educational Codeforces Round 23
A题 分析:注意两个点之间的倍数差,若为偶数则为YES,否则为NO #include "iostream" #include "cstdio" #include ...