题目传送门

题意:素性测试和大整数分解, N (2 <= N < 254)。

分析:没啥好讲的,套个模板,POJ上C++提交

收获:写完这题得到模板

代码:

/************************************************
* Author :Running_Time
* Created Time :2015-8-28 13:02:38
* File Name :POJ_1811.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int S = 20;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7; /*
素性测试,Miller_Rabin 随机算法
可以判断< 2^63的数
素数:true,合数:false
*/
const int S = 20; //随机算法判定次数,S越大,判错概率越小 //非递归写法,递归写法可能会爆栈
ll GCD(ll a, ll b) {
if (a == 0) return 1;
if (a < 0) a = -a;
while (b) {
ll c = a % b;
a = b; b = c;
}
return a;
} //计算 (a * b) % p,a,b是long long数,直接相乘可能会溢出
ll multi_mod(ll a, ll b, ll p) {
ll ret = 0;
a %= p; b %= p;
while (b) {
if (b & 1) {
ret += a;
if (ret >= p) ret -= p;
}
a <<= 1;
if (a >= p) a -= p;
b >>= 1;
}
return ret;
} //计算 a ^ x % p
ll pow_mod(ll a, ll x, ll p) {
ll ret = 1;
a %= p;
while (x) {
if (x & 1) ret = multi_mod (ret, a, p);
a = multi_mod (a, a, p);
x >>= 1;
}
return ret;
} /*
以a为基,n-1=x*2^t,a^(n-1) = 1(mod n) 验证n是不是合数
一定是合数返回true, 不一定返回false
*/
bool check(ll a, ll n, ll x, int t) {
ll ret = pow_mod (a, x, n);
ll last = ret;
for (int i=1; i<=t; ++i) {
ret = multi_mod (ret, ret, n);
if (ret == 1 && last != 1 && last != n - 1) return true; //合数
last = ret;
}
if (ret != 1) return true;
return false;
} bool Miller_Rabin(ll n) {
if (n == 2) return true;
if (n < 2 || ! (n & 1)) return false; //偶数或1
ll x = n - 1; int t = 0;
while (! (x & 1)) {
x >>= 1; t++;
}
for (int i=1; i<=S; ++i) {
ll a = rand () % (n - 1) + 1; //需要cstdlib头文件
if (check (a, n, x, t)) return false; //合数
}
return true;
} /*
大整数分解,Pollard_rho 随机算法
factorize ()保存质因数在vector
*/
ll Pollard_rho(ll x, ll c) {
ll i = 1, k = 2;
ll a = rand () % x;
ll b = a;
while (1) {
i++;
a = (multi_mod (a, a, x) + c) % x;
ll d = GCD (b - a, x);
if (d != 1 && d != x) return d;
if (b == a) return x;
if (i == k) b = a, k += k;
}
} void factorize(ll n, vector<ll> &ret) {
if (Miller_Rabin (n)) { //素数
ret.push_back (n); return ;
}
ll p = n;
while (p >= n) p = Pollard_rho (p, rand () % (n - 1) + 1);
factorize (p, ret);
factorize (n / p, ret);
} int main(void) {
srand (time (NULL));
int T; scanf ("%d", &T);
while (T--) {
ll n; scanf ("%I64d", &n);
if (Miller_Rabin (n)) puts ("Prime");
else {
if (n <= 1) {
puts ("-1"); continue;
}
vector<ll> ans;
factorize (n, ans);
sort (ans.begin (), ans.end ());
printf ("%I64d\n", ans[0]);
// for (int i=0; i<ans.size (); ++i) {
// printf ("%I64d%c", ans[i], (i == ans.size ()-1) ? '\n' : ' ');
// }
}
} return 0;
}

  

Miller&&Pollard POJ 1811 Prime Test的更多相关文章

  1. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  2. POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)

    题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...

  3. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  4. POJ 1811 Prime Test 素性测试 分解素因子

    题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用 ...

  5. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  6. poj 1811 Prime Test 大数素数测试+大数因子分解

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case ...

  7. POJ 1811 Prime Test(Miller-Rabin & Pollard-rho素数测试)

    Description Given a big integer number, you are required to find out whether it's a prime number. In ...

  8. POJ 1811 Prime Test

    题意:对于一个大整数,判断是否质数,如果不是质数输出最小质因子. 解法:判断质数使用Miller-Rabin测试,分解质因子使用Pollard-Rho,Miller-Rabin测试用的红书模板,将测试 ...

  9. POJ 1811 Prime Test( Pollard-rho整数分解经典题 )

    链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...

随机推荐

  1. Zookeeper 3.4 官方文档翻译

    说明 个人英语水平非常一般,理解可能有偏差,假设有翻译不恰当之处,请看官指点. 1.简单介绍 分布式系统就像动物园.当中每台server就像一仅仅动物,Zookeeper就像动物园管理员,协调.服务于 ...

  2. ImageViewCoverflow

    https://github.com/Bertlk/ImageViewCoverflow https://github.com/dolphinwang/ImageCoverFlow http://ww ...

  3. Openstack-Ceilometer-获取主机内存 的使用

    1. 物理server配置 1.1安装 參考 http://blog.csdn.net/qq_21398167/article/details/47019751 1.2      配置 关闭selin ...

  4. 查看和改动MySQL数据库表存储引擎

            要做一名合格的程序猿,除了把代码写的美丽外,熟知数据库方面的知识也是不可或缺的.以下总结一下怎样查看和改动MySQL数据库表存储引擎:        1.查看数据库所能支持的存储引擎: ...

  5. LiveWriter插入高亮代码插件介绍 基于SyntaxHighighter

    Codeint main() { int i; printf("%d",i); } 插件介绍 辛苦了两人小时写日志不小心浏览器崩溃了,发誓以后一定记得用Word先写好. 将Word ...

  6. accept()函数用来告诉Qt,事件处理函数“接收”了这个事件,不要再传递;ignore()函数则告诉Qt,事件处理函数“忽略”了这个事件,需要继续传递(看一下QWidget::mousePressEvent的实现,最为典型。如果希望忽略事件,只要调用父类的响应函数即可)

    QEvent的accept()和ignore()一般不会用到,因为不如直接调用QWidget类的事件处理函数直接,而且作用是一样的,见下面的例子. 推荐直接调用QWidget的事件处理函数.而不是调用 ...

  7. 如何在Android studio中同时打开多个工程?

    最近学习Android Studio,想同时打开两个Project.但是点击File->Open之后,原有的Project被关闭掉了.怎么在新的窗口中打开Project呢? 解决: 点击Help ...

  8. python 闭包变量不允许write,要使用nonlocal

    以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >>>bar = foo() &g ...

  9. codeforces 689A A. Mike and Cellphone(水题)

    题目链接: A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input s ...

  10. Ubuntu+anaconda环境里安装opencv

    在Ubuntu的Anaconda环境下安装OpenCV比较方便,直接在终端中输入以下命令: conda install --channel https://conda.anaconda.org/men ...