Baum-Welch算法(EM算法)对HMM模型的训练
Baum-Welch算法就是EM算法,所以首先给出EM算法的Q函数
\[\sum_zP(Z|Y,\theta')\log P(Y,Z|\theta)\]
换成HMM里面的记号便于理解
\[Q(\lambda,\lambda') = \sum_zP(I|O,\lambda')\log P(I,O|\lambda)\]
根据状态序列和观测序列的联合分布
\[\begin{align*}
P(O,I|\lambda) &= \sum_IP(O|I,\lambda)P(I|\lambda)\\
&= \pi_{i_1}b_{i_1}(o_1)a_{i_1i_2}b_{i_2}(o_2)\dots a_{i_{T-1}i_T}b_{i_T}(o_T)\\
\end{align*}\]
代入上式后得
\[\begin{align*}
Q(\lambda, \lambda') &= \sum_IP(I|O,\lambda')\log\pi_{i_1}\\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=1}^Tb_{i_t}(o_t) \\ &+ \sum_IP(I|O,\lambda')\log\sum_{t=2}^Ta_{i_{t-1}i_T}
\end{align*}\]
这便是E步,下面看看M步.
看Q函数得第一步, 由于带有约束
\[\sum_i^N\pi_i = 1\]
这个时候就需要请出拉格朗日乘子了
\[\begin{align*}
L &= \sum_IP(I|O,\lambda')\log\pi_1 + \gamma(\sum_{i=1}^N\pi_i -1)\\
&= \sum_{i=1}^NP(O,i_1=i|\lambda')\log\pi_i + \gamma(\sum_{i=1}^N\pi_i -1)\\
\end{align*}\]
令\(\dfrac{\partial L}{\partial\pi_i} = 0\)得到
\[\begin{align*}
P(O, i_1 = i|\lambda') + \gamma \pi_i &= 0\\
P(O, i_1 = i|\lambda') &= -\gamma \pi_i\\
\sum_{i=1}^NP(O, i_1 = i|\lambda') &= -\gamma \sum_{i=1}^N\pi_i\\
\gamma &= -P(O|\lambda')
\end{align*}\]
回代,得到
\[\pi_i = \dfrac{P(O, i_1=i|\lambda')}{P(O|\lambda')}\]
其他得参数同样可以得到
Baum-Welch算法(EM算法)对HMM模型的训练的更多相关文章
- 简单易学的机器学习算法——EM算法
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...
- 详解十大经典机器学习算法——EM算法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization al ...
- NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...
- 极大似然估计、贝叶斯估计、EM算法
参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就 ...
- EM算法原理以及高斯混合模型实践
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然 ...
- EM算法(3):EM算法运用
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Exp ...
- EM算法(2):GMM训练算法
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Ga ...
- 高斯混合模型参数估计的EM算法
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...
- 机器学习(七)EM算法、GMM
一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...
随机推荐
- 最具士兵突击实战类型的JavaScript
JavaScript实战一书的基础知识部分帮助读者快速踏入JavaScript领域之门,jQuery部分帮助读者随心所欲地去工作,HTML5部分帮读者搭上时代的班车,Node.JS则可以让读者屹立在技 ...
- Uncaught exception 'PDOException' with message 'SQLSTATE[HY000] [2002] No such file or directory解决方法
今天用pdo连接mysql遇到一个奇怪的问题,host设为127.0.0.1可以连接成功,设为localhost就会报如下的错误: PHP Fatal error: Uncaught excepti ...
- python爬虫之路——正则表达式初识
正则表达式:是一个特殊的符号系列,检查字符串是否与指定模式匹配. python中的re模块拥有全部的正则表达式功能. 判断字符: 类型: 数目:有无: 个数:单值 区间 离散 判 ...
- python基础教程总结15——6 CGI远程编辑
功能: 将文档作为普通网页显示: 在web表单的文本域内显示文档: 保存表单中的文本: 使用密码保护文档: 容易拓展,支持处理多余一个文档的情况 1.CGI CGI(Comment Gateway I ...
- python基础教程总结4—基本语句
一.print 和 import 的更多信息 print 打印多个表达式也是可行的,只要将它们用逗号隔开就好: >>> print('Age:' , 42) Age: 42 可以看到 ...
- CPP-STL:vector的内存释放
1. vector容器的内存自增长 与其他容器不同,其内存空间只会增长,不会减小.先来看看"C++ Primer"中怎么说:为了支持快速的随机访问,vector容器的元素以连续方式 ...
- docker安装gitlab-ce
pull and run docker pull docker.io/gitlab/gitlab-ce docker run -itd --name gitlab -p 10080:80 gitlab ...
- Electron的介绍
1.1 Electron是什么? 引用官网的一句话: Build cross platform desktop apps with JavaScript, HTML, and CSS 1.2 诞生 技 ...
- js函数式编程(一)-纯函数
我将写的第一个主题是js的函数式编程,这一系列都是mostly adequate guide这本书的读书总结.原书在gitbook上,有中文版.由于原作者性格活泼,书中夹杂很多俚语,并且行文洒脱.中文 ...
- new和delete的动态分配。
c++对象模型 视频的实际操作 note: 1.虚函数有虚指针,所以是4,不管有几个虚函数, 都只有一个vptr来存放调用的虚函数的地址. 2.子类的内存是父类内存的加自己的数据内存. 3.clas ...