首先膜一发网上的题解。大佬们tql。

给你n个单调递增的数字,问是否能够把这些数字重新构成一棵二叉搜索树(BST),且所有的父亲结点和叶子结点之间的gcd > 1?

这个题场上是想暴力试试的。结果不行。发现符合最优子结构,可以DP。但是想不出来怎么转移。

看了大佬的题解。

若以第 k 个结点为根节点,用 L[i][k] 表示是否能够向左延伸到 i 点,R[k][j] 表示是否能够向右延伸到 j 点。

那么区间 [l, r] 合法,仅当 L[l][k] && R[k][r] == 1。

这样有了断点 k 作为[l, r]的根,就可以判断gcd能否用L[l][r] 和 R[l][r] 更新 R[l-1][r] 和 L[l][r+1]。

判断gcd可以预处理。

这样总复杂度是n^2 * logn

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
typedef long long LL;
const int maxn = + ; int n;
int a[maxn];
int v[maxn][maxn], L[maxn][maxn], R[maxn][maxn], C[maxn][maxn];
int dp[maxn][maxn][]; int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
L[i][i] = R[i][i] = ;
scanf("%d", &a[i]);
} for (int i = ; i <= n; i++)
for (int j = i+; j <= n; j++)
v[i][j] = v[j][i] = __gcd(a[i], a[j]) != ; int r;
for (int len = ; len <= n; len++)
for (int l = ; (r = l+len-) <= n; l++)
for (int k = l; k <= r; k++)
if (L[l][k] && R[k][r])
{
C[l][r] = ;
if (v[k][l-]) R[l-][r] = ;
if (v[k][r+]) L[l][r+] = ;
} printf("%s\n", C[][n]?"Yes" : "No");
}

Codeforces Round #505 D. Recovering BST(区间DP)的更多相关文章

  1. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

  2. codeforce #505D - Recovering BST 区间DP

    1025D 题意: 有一个递增序列,问能不能构建出一颗每条边的端点值都不互质的二叉排序树. 思路: 区间DP,但是和常见的区间DP不一样, 这里dp[i][j]表示的是区间[i,j]能否以i为根建立一 ...

  3. CF D. Recovering BST (区间DP)

    题意:给你n个节点,每个节点有一个权值,两个点可以连边当且仅当这两个点的gcd>1,问你这n个点能否构成一个二叉搜索树(每个节点最多有两个儿子,且左儿子小于右儿子),输入为递增顺序. 分析: 若 ...

  4. Codeforces Round #505

    Codeforces Round #505 A. Doggo Recoloring 题目描述:给定一个字符串,每次选择一个在字符串里面出现至少两次的字符,然后将这种字符变成那一种指定的字符,问最终这个 ...

  5. D. Recovering BST Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)

    http://codeforces.com/contest/1025/problem/D 树 dp 优化 f[x][y][0]=f[x][z][1] & f[z+1][y][0] ( gcd( ...

  6. Codeforces Round #505 (Div 1 + Div 2 Combined) Solution

    从这里开始 题目列表 瞎扯 Problem A Doggo Recoloring Problem B Weakened Common Divisor Problem C Plasticine zebr ...

  7. Codeforces Round #505 (Div 1 + Div 2) (A~D)

    目录 Codeforces 1025 A.Doggo Recoloring B.Weakened Common Divisor C.Plasticine zebra D.Recovering BST( ...

  8. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  9. Codeforces Gym 100002 Problem F "Folding" 区间DP

    Problem F "Folding" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/ ...

随机推荐

  1. 实现Sublime Text3中vue文件高亮显示的最有效的方法

    今天第一次使用Sublime Text3软件,在实现vue文件高亮显示的过程中一直报错,经过了半天时间的不停尝试终于找到了最有效的一种解决方法!错误提示如下: 刚开始尝试了很多方法都不行,只要打开in ...

  2. webpack.config.js====CSS相关:postcss-loader加载器,自动添加前缀

    1. 在webpack中加载css需要先安装style-loader 和 css-loader cnpm install --save-dev style-loader css-loader 2. 在 ...

  3. java类及编写public类的基础点

    1.一个java文件中只能有一个public类.且公共类名称必须与java文件名一致,否则会出现错误提示.与其他面向对象编程语言的一样,在利用java分析问题时,基本思路即为将问题的属性(静)与行为( ...

  4. SPEC CPU 使用简介

    SPEC CPU2000简介 SPEC CPU2000是由标准性能评价机构“The Standard Performance Evaluation Corporation (SPEC)”开发的用于评测 ...

  5. TCP连接建立与关闭

    http://hi.baidu.com/psorqkxcsfbbghd/item/70f3bd91943b9248f14215cd TCP连接建立与关闭 TCP 是一个面向连接的协议,无论哪一方向另一 ...

  6. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  7. python基础教程总结5——函数

    1.函数创建 1).函数代码块以def关键词开头,后接函数标识符名称和圆括号()2).任何传入参数和自变量必须放在圆括号中间.圆括号之间可以用于定义参数3).函数的第一行语句可以选择性地使用文档字符串 ...

  8. 【UML】概述

    前言 看完UML视频,很多人不明白UML到底是干什么用的,举个通俗的例子,就像盖房子一样,厨房卧室楼层之间怎么拼接,每个部分用什么材料,每个部分里放什么家具什么餐具,每个部分是干吗用的,UML就相当于 ...

  9. codeforce Gym 100500I Hall of Fame (水)

    题意:统计一些串中,字母的出现频率,不分大小写,找出现频率最高5个字符(相同频率优先取字典序大的),把他们的对应的值加起来判断以下是否大于62. 没出现的不算. #include<cstdio& ...

  10. Java替换手机号掩码

    String tel = "18304072984"; // 括号表示组,被替换的部分$n表示第n组的内容 tel = tel.replaceAll("(\\d{3})\ ...