题目描述

XWW是个影响力很大的人,他有很多的追随者。这些追随者都想要加入XWW教成为XWW的教徒。但是这并不容易,需要通过XWW的考核。
XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性。
称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0;(2)矩阵中每行的最后一个元素等于该行前N-1个数的和;(3)矩阵中每列的最后一个元素等于该列前N-1个数的和。
现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性。同时XWW还要求A中的元素之和尽量大。

输入

第一行一个整数N,N ≤ 100。
接下来N行每行包含N个绝对值小于等于1000的实数,最多一位小数。

输出

输出一行,即取整后A矩阵的元素之和的最大值。无解输出No。

样例输入

4
3.1 6.8 7.3 17.2
9.6 2.4 0.7 12.7
3.6 1.2 6.5 11.3
16.3 10.4 14.5 0

样例输出

129


题解

有上下界最大流

正常这种题应该是费用流建模,但实际上由于本题的特殊性质,只需要最大流即可解决。

首先一个数最小就是它向下取整,而如果是小数还可以取向上取整。

这里为了方便,设a[i][j]表示某个数的最小取值,b[i][j]表示某个数能否+1,能则为1,不能则为0.

那么容易想到建图:S->第i行最后一列,容量下界为a[i][n],上界为a[i][n]+b[i][n];第i行最后一列->最后一行第j列,容量下界为a[i][j],上界为a[i][j]+b[i][j];最后一行第j列->T,容量下界为a[n][j],上界为a[n][j]+b[n][j]。

然后正常人都会发现这是有上下界最大费用流,而实际上很多题解都是有上下界最大流,为什么?

因为本题的特殊性,一条增广路一定会经过3条边,所以费用为流量*3。因此只需要求出最大流,乘以3即为费用。

至于有上下界最大流的具体求法:对于某条边x->y,容量下界为z,上界为z+w,连x->y,容量为w;SS->y&x->TT,容量为z;加T->S,容量为inf。从SS到TT跑最大流,未满流则无解,满流则记录T->S的容量(即反向边的残量)为ans1;再去掉与SS或TT相连的边,去掉T->S的边,从S到T跑最大流为ans2,ans1+ans2为解。

另外本题规定的a[n][n]=0实际上并无卵用,直接无视就好。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 300
#define M 100000
#define inf 0x3fffffff
using namespace std;
queue<int> q;
int u[N][N] , v[N][N] , head[N] , to[M] , val[M] , next[M] , cnt = 1 , b , e , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , j , sum = 0 , ans = 0;
double tmp;
scanf("%d" , &n) , b = 0 , e = 2 * n - 1 , s = 2 * n , t = 2 * n + 1 , add(e , b , inf);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lf" , &tmp) , u[i][j] = (int)tmp , v[i][j] = (tmp > u[i][j]) , sum += u[i][j];
for(i = 1 ; i < n ; i ++ ) add(b , i , v[i][n]) , add(s , i , u[i][n]) , add(b , t , u[i][n]);
for(i = 1 ; i < n ; i ++ ) add(i + n - 1 , e , v[n][i]) , add(s , e , u[n][i]) , add(i + n - 1 , t , u[n][i]);
for(i = 1 ; i < n ; i ++ )
for(j = 1 ; j < n ; j ++ )
add(i , j + n - 1 , v[i][j]) , add(s , j + n - 1 , u[i][j]) , add(i , t , u[i][j]);
while(bfs()) sum -= dinic(s , inf);
if(sum)
{
printf("No\n");
return 0;
}
ans = val[3];
for(i = head[s] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
for(i = head[t] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
val[2] = val[3] = 0 , s = b , t = e;
while(bfs()) ans += dinic(s , inf);
printf("%d\n" , ans * 3);
return 0;
}

【bzoj3698】XWW的难题 有上下界最大流的更多相关文章

  1. 【BZOJ3698】XWW的难题 有上下界的最大流

    [BZOJ3698]XWW的难题 Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了 ...

  2. BZOJ 3698: XWW的难题(有源汇上下界最大流)

    题面 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A, ...

  3. bzoj3698 XWW的难题

    题意:给你个n * n的实数矩阵,你需要把它中的每个数上/下取整,并满足如下条件: 每行最后一个数等于前面的和. 每列最后一个数等于前面的和. n行n列的那个元素始终为0,不予考虑. 求满足条件下矩阵 ...

  4. HDU 4940 Destroy Transportation system(无源汇有上下界最大流)

    看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...

  5. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

  6. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  7. 【有源汇上下界费用流】BZOJ 3876 [Ahoi2014]支线剧情

    题目链接: http://www.lydsy.com:808/JudgeOnline/problem.php?id=3876 题目大意: 给定一张拓扑图(有向无环图),每条边有边权,每次只能从第一个点 ...

  8. 【有源汇上下界最大流】ZOJ 3229 Shoot the Bullet

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3229 题目大意: n天给m个女孩拍照(1<=n<= ...

  9. 【无源汇上下界最大流】SGU 194 Reactor Cooling

    题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=194 题目大意: n个点(n<20000!!!不是200!!!RE了无数次) ...

随机推荐

  1. webpack安装包的时候 1程序目录不要在C盘 2路径不要有中文 3用cnpm

    webpack安装包的时候 1程序目录不要在C盘 2路径不要有中文 3用cnpm

  2. C#之winform实现文件拖拽功能【转】

    将一个文件拖拽到窗体的某个控件时,将该控件的路径显示在该控件上,只要拿到了路径自然可以读取文件中的内容了 将一个控件的属性AllowDrop设置为true,然后添加DragDrop.DragEnter ...

  3. npm 安装插件失败

    由于npm的很多安装包的下载源来自国外网站,所以比较缓慢甚至访问失败. 再此可以用淘宝的镜像文件来安装插件.方法其实很简单:

  4. Java第7次作业:造人类(用private封装,用static关键字自己造重载输出方法)什么是面向对象程序设计?什么是类和对象?什么是无参有参构造方法 ?什么是封装?

    什么是面向对象程序设计? 我们称为OOP(Object  Oriented  Programming) 就是非结构化的程序设计 要使用类和对象的方法来进行编程 什么是类,什么是对象 类就是封装了属性和 ...

  5. tmp_获取下一个回文数

    直接拿之前一次竞赛中写的code,稍微完善了点,后面有机会在优化 uint64_t GetNextPalindrome(uint64_t data) { //100以内的数字已经特殊考虑过,不存在差值 ...

  6. paper:synthesizable finite state machine design techniques using the new systemverilog 3.0 enhancements 之 FSM Coding Goals

    1.the fsm coding style should be easily modifiable to change state encoding and FSM styles. FSM 的的 状 ...

  7. mysql替换表中某字段的某值

    UPDATE  `cases`  SET  `case_desc` = replace(`case_desc`, 'src="//tuku-assets.m.jia.com/assets/i ...

  8. vue创建路由,axios前后台交互,element-ui配置使用,django contentType组件

    vue中创建路由 每一个vue组件都有三部分组成 template:放html代码 script:放js相关 style:放css相关 vue中创建路由 1.先创建组件 Course.vue 2.ro ...

  9. Python 基本数据类型 (二) - 字符串1

    # ----------- 首字母大写 ---------- test = "alex is a man" v = test.capitalize() print(v): Alex ...

  10. navigationcontroller和navigationbar和navigationitem之间的区别以及不用nib实现点击屏幕关闭虚拟键盘20130911

    1.UIViewController UIView的关系. UIView是视图,UIViewController是视图控制器,两者之间是从属关系,当创建一个UIViewController的时候,一般 ...