【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述
称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很大,只能输出模P以后的值
输入
输入文件的第一行包含两个整数 n和p,含义如上所述。
输出
输出文件中仅包含一个整数,表示计算1,2,⋯, n的排列中, Mogic排列的个数模 p的值。
样例输入
20 23
样例输出
16
题解
dp+Lucas定理
题目显然小根堆,考虑怎么求以一个节点为根的方案数。根肯定是最小的节点,剩余$n-1$个数选择左子树大小个作为左子树,其余作为右子树。
设$f[i]$表示以i为根的子树形成小根堆的方案数,那么$f[i]=C_{si[i]-1}^{si[i<<1]}*f[i<<1]*f[i<<1|1]$。
注意处理某子树为空的方案数。
另外本题没有保证$n\le p$,故组合数需要使用Lucas定理求出。
#include <cstdio>
#define N 1000010
typedef long long ll;
ll fac[N] , inv[N] , fin[N] , f[N << 1] , si[N << 1];
int p;
ll choose(int n , int m)
{
if(n < m) return 0;
if(n < p && m < p) return fac[n] * fin[m] % p * fin[n - m] % p;
else return choose(n / p , m / p) * choose(n % p , m % p) % p;
}
int main()
{
int n , i;
scanf("%d%d" , &n , &p);
fac[0] = fac[1] = inv[1] = fin[0] = fin[1] = f[0] = 1;
for(i = 2 ; i <= n ; i ++ )
{
fac[i] = fac[i - 1] * i % p;
inv[i] = (p - p / i) * inv[p % i] % p;
fin[i] = fin[i - 1] * inv[i] % p;
}
for(i = n ; i ; i -- )
{
si[i] = si[i << 1] + si[i << 1 | 1] + 1;
f[i] = choose(si[i] - 1 , si[i << 1]) * ((i << 1) > n ? 1 : f[i << 1]) % p * ((i << 1 | 1) > n ? 1 : f[i << 1 | 1]) % p;
}
printf("%lld\n" , f[1]);
return 0;
}
【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理的更多相关文章
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...
- [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
[BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...
随机推荐
- POJ 2184 Cow Exhibition 奶牛展(01背包,变形)
题意:有只奶牛要证明奶牛不笨,所以要带一些奶牛伙伴去证明自己.牛有智商和幽默感,两者可为负的(难在这),要求所有牛的智商和之 / 幽默感之和都不为负.求两者之和的最大值. 思路:每只牛可以带或不带上, ...
- 删除Chrome地址栏记录中自动补全的网址
为了删除某个自动补全的网站,多年的历史纪录没了,还浪费我十多分钟,蠢哭_(:з」∠)_ 不是历史记录.不是清除浏览器数据.不是myactivity(谷歌账号)中的历史纪录,直接在书签中搜索,删除,OK ...
- Python封装补充
property属性 property实际是setter getter deleter是集合体,并不是一个单独的方法 import math # 使用的库 class Circle: def __in ...
- nfs-ganesha使用
一 nfs-ganesha在centos7上安装 yum -y install centos-release-gluster yum install -y nfs-ganesha.x86_64yum ...
- git使用stash存储相关操作
git stash 将当前修改存储起来 git stash apply 恢复最近一次存储 git stash apply stash@{2} 恢复某一次存储 git stash list 查看存储列 ...
- Vim如何显示和关闭行号
显示行号: set nu 去除行号: set nonu
- 控制nginx并发链接数量和客户端请求nginx的速率
一.控制nginx并发链接数 ngx_http_limit_conn_module这个模块用于限制每个定义的key值的链接数,特别是单IP的链接数. 不是所有的链接数都会被计数,一个符合计数要求的连接 ...
- DeepFaceLab小白入门(5):训练换脸模型!
训练模型,是换脸过程中最重要的一部分,也是耗时最长的一部分.很多人会问到底需要多少时间?有人会告诉你看loss值到0.02以下就可以了.我会告诉你,不要看什么数值,看预览窗口的人脸.看第二列是否和第一 ...
- python基础-面向对象的三大特征
继承 单继承 父类 基类 子类 派生类 继承:是面向对象软件技术当中的一个概念,如果一个类别A“继承自”另一个类别B,就把这个A称为“B的子类别”,而把B称为“A的父类别”也可以称“B是A的超类”. ...
- POJ:1961-Period(寻找字符串循环节)
Period Time Limit: 3000MS Memory Limit: 30000K Description For each prefix of a given string S with ...