浅谈主席树:https://www.cnblogs.com/AKMer/p/9956734.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4408

我们先把问题简化,给你一个可重集,求最小的不能被凑出来的正整数。

性质一:假设原集合可以把\([1,num]\)全部凑出来,新加入一个数字\(x\),就可以凑出\([1,num+x]\)

证明:显然。

性质二:如果你已经可以凑出\([1,num_1]\),当前集合里权值在\([1,num_1]\)里的所有数的权值和为\(num_2\),那么你就可以凑出\([1,num_2]\)。

证明:因为性质一。

性质三:如果你由\([1,num_1]\)得到了\([1,num_2]\)且\(num_2>num_1\),然后由\([1,num_2]\)得到了\([1,num_3]\)且\(num_3> num_2\),那么\(num_3\geqslant2*num_1\)。

证明:因为由\(num_2\)转到\(num_3\),增加的数字必然在\([num_1,num_2]\)内,所以\(num_3\geqslant num_1+num_1\)。

因为这两条性质,我们可以将最小的不能凑出的数不断变大,而且是成倍增长的。先钦点不能凑出的数字为\(1\),然后根据性质二不断变大,时间是\(60*logn\)的。

时间复杂度:\(O(60*mlogn)\)

空间复杂度:\(O(nlogn)\)

代码如下:

#include <cstdio>
using namespace std; const int maxn=1e5+5; int n,m,sum;
int a[maxn],rt[maxn]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct tree_node {
int sum,cnt,ls,rs;
}; struct chairman_tree {
int tot;
tree_node tree[maxn*35]; void ins(int lst,int &now,int l,int r,int pos) {
now=++tot;tree[now]=tree[lst];
tree[now].cnt++;tree[now].sum+=pos;
if(l==r)return;
int mid=(l+r)>>1;
if(pos<=mid)ins(tree[lst].ls,tree[now].ls,l,mid,pos);
else ins(tree[lst].rs,tree[now].rs,mid+1,r,pos);
} int query(int x,int y,int l,int r,int pos) {
if(r<=pos)return tree[y].sum-tree[x].sum;
int mid=(l+r)>>1,res=tree[tree[y].ls].sum-tree[tree[x].ls].sum;
if(pos<=mid)res=query(tree[x].ls,tree[y].ls,l,mid,pos);
else res+=query(tree[x].rs,tree[y].rs,mid+1,r,pos);
return res;
}
}T; int main() {
n=read();
for(int i=1;i<=n;i++) {
a[i]=read();sum+=a[i];
}
for(int i=1;i<=n;i++)
T.ins(rt[i-1],rt[i],1,sum,a[i]);
m=read();
for(int i=1;i<=m;i++) {
int l=read(),r=read(),cnt=1;
while(cnt<sum) {
int tmp=T.query(rt[l-1],rt[r],1,sum,cnt);
if(tmp<cnt)break; else cnt=tmp+1;//cnt就是题解里讲的num
}
printf("%d\n",cnt);
}
return 0;
}

BZOJ4408:[FJOI2016]神秘数的更多相关文章

  1. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  2. [bzoj4408][Fjoi2016]神秘数

    Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...

  3. 题解【bzoj4587 & bzoj4408 [FJOI2016]神秘数】

    Description \(n\) 个数的序列,每次询问一个区间,求最小的一个数使得不能用这个区间中的数之和表示. \(n \leq 10^5, \sum a_i \leq 10^9\) 这两个题一个 ...

  4. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  5. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  6. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

  7. [FJOI2016]神秘数(脑洞+可持久化)

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  8. Luogu P4587 [FJOI2016]神秘数

    一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...

  9. 【BZOJ-4408】神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 475  Solved: 287[Submit][Status ...

  10. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

随机推荐

  1. 每门课由平时成绩和考试成绩组成,满分为r。现在他知道每门课的平时成绩为ai ,若想让这门课的考试成绩多拿一分的话,小v要花bi 的时间复习,不复习的话当然就是0分。同时我们显然可以发现复习得再多也不会拿到超过满分的分数。为了拿到奖学金,小v至少要花多少时间复习。

    遇到问题要常思考为什么,做这道题的时候,要注意给定的数据范围. 第一行三个整数n,r,avg(n大于等于1小于等于1e5,r大于等于1小于等于1e9,avg大于等于1小于等于1e6),接下来n行,每行 ...

  2. 迁移,移动.vagrant.d目录

    默认在 C:\Users\***\.vagrant.d 然后下面有boxes目录 想迁移到其它目录 setx VAGRANT_HOME "/d/.vagrant.d/" setx ...

  3. iOS 逆向 - Class-dump 安装和使用方法

    1.下载安装包 http://stevenygard.com/projects/class-dump/,这里我下载的是 class-dump-3.5.dmp.然后把下载下来的 dmg 打开,复制文件里 ...

  4. iOS项目 -- 模仿花椒直播做的第一层次界面

    公最近直播比较火爆,我也跟跟风,自己做一个直播app, 现在打算用金山云直播的,但是去注册的时候,联系那边的工作人员,他们讲使用金山云直播要有公司和他们线下签约才能授权开放直播平台. 怎么办呢?于是我 ...

  5. map和string的使用方法

    这个是别人写的map使用方法比較好能够看一下 http://www.cnblogs.com/anywei/archive/2011/10/27/2226830.html 怎样向数组中插入内容 http ...

  6. python 基础 4.1 函数的参数

    #/usr/bin/python #coding=utf-8 #@Time   :2017/10/24 9:09 #@Auther :liuzhenchuan #@File   :函数的参数.py # ...

  7. @Bean 和@ Component的区别

    @Component auto detects and configures the beans using classpath scanning whereas @Bean explicitly d ...

  8. 性能测试--初识Jmeter

    初识Jmeter Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 它可以用于测试静态和动 ...

  9. 【题解】Counting D-sets(容斥+欧拉定理)

    [题解]Counting D-sets(容斥+欧拉定理) 没时间写先咕咕咕. vjCodeChef - CNTDSETS 就是容斥,只是难了一二三四五\(\dots \inf\)点 题目大意: 给定你 ...

  10. Wireshark学习笔记——怎样高速抓取HTTP数据包

    0.前言     在火狐浏览器和谷歌浏览器中能够很方便的调试network(抓取HTTP数据包),可是在360系列浏览器(兼容模式或IE标准模式)中抓取HTTP数据包就不那么那么方便了.尽管也可使用H ...