题目描述

小时候的雨荨非常听话,是父母眼中的好孩子。在学校是老师的左右手,同学的好榜样。后来她成为艾利斯顿第二代考神,这和小时候培养的良好素质是分不开的。雨荨的妈妈也为有这么一个懂事的女儿感到高兴。一次期末考试,雨荨不知道第多少次,再次考了全年级第一名。雨荨的妈妈看到女儿100分的成绩单时,脸上又泛起了幸福的笑容,作为奖励,她给雨荨买了n个布娃娃。细心的雨荨发现,第i个布娃娃有一个耐心值P[i]以及一个魅力值C[i],并且还有能够忍受的耐心值的上限R[i]以及下限L[i]。当一个布娃娃j满足L[j]<=P[i]并且P[i]<=R[j],那么布娃娃j喜欢布娃娃i。雨荨还发现,一个布娃娃有可能喜欢它自己。每个布娃娃心中都有一个谜团,具体来说就是:第i个布娃娃想知道喜欢它的布娃娃中,魅力值第i大的布娃娃的魅力值是多少,并且称这个布娃娃的谜团答案为这个魅力值的大小,如果不存在,那么这个布娃娃的谜团答案为0。鉴于雨荨的上司栋栋不让题目的数据过大,下面给出数据的生成方法:给出16个参数:
Padd, Pfirst, Pmod, Pprod, Cadd, Cfirst, Cmod, Cprod, Ladd, Lfirst, Lmod, Lprod, Radd, Rfirst, Rmod, Rprod。
----------------------------------------------------------------------------------------
P[1] = Pfirst % Pmod, P[i] = (P[i-1]   Pprod + Padd + i) % Pmod (i > 1)。
----------------------------------------------------------------------------------------
对于C、L、R数组也有类似的得到方式, %代表取余运算。注意:L和R数组生成完之后,如果某个布娃娃的忍耐度上限小于下限,那么交换它的上限和下限。当然,雨荨也不会让你告诉她每个布娃娃的谜团答案,因为那样会使输出数据很大。所以雨荨希望你告诉她,所有布娃娃谜团答案的和除以19921228的余数是多少。

输入

输入的第一行有一个整数n,代表布娃娃的个数。
输入的第二行有16个用空格隔开的整数
分别代表Padd,Pfirst,Pmod,Pprod,Cadd,Cfirst,Cmod,Cprod,Ladd,Lfirst,Lmod,Lprod,Radd,Rfirst,Rmod,Rprod。
16个参数均为1到100,000,000中的整数。

输出

输出一个整数,代表所有布娃娃谜团答案的和除以19921228的余数。

样例输入

3
2 3 4 3 1 4 5 2 3 6 9 1 1 2 3 4

样例输出

4


题目大意

给你若干个区间,每个区间有一个权值。现在对于若干个点,求所有包含该点的区间中权值第k大的是多少。

题解

权值线段树

由于询问不是强制在线的,因此可以把所有位置排序,然后扫一遍。

对于每段区间,把它看成两个点:$l$位置加入,$r$位置删除。把每个区间的两个点和询问点以坐标为关键字放到一起排序,坐标相同的按照加入、询问、删除的顺序排序,然后从左向右扫一遍,扫到加入就把权值加入到权值线段树中;扫到询问就在权值线段树中查询第k大;扫到删除就在权值线段树中删除。

时间复杂度$O(n\log n)$。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
struct data
{
int p , org , id;
data(int p0 = 0 , int org0 = 0 , int id0 = 0) {p = p0 , org = org0 , id = id0;}
bool operator<(const data &a)const {return p == a.p ? org > a.org : p < a.p;}
}a[N * 3];
int P[N] , C[N] , L[N] , R[N] , v[N] , si[N << 2];
void update(int p , int a , int l , int r , int x)
{
si[x] += a;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , lson);
else update(p , a , rson);
}
int query(int k , int l , int r , int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(k <= si[x << 1 | 1]) return query(k , rson);
else return query(k - si[x << 1 | 1] , lson);
}
int main()
{
int n , Padd , Pfirst , Pmod , Pprod , Cadd , Cfirst , Cmod , Cprod , Ladd , Lfirst , Lmod , Lprod , Radd , Rfirst , Rmod , Rprod , i , ans = 0;
scanf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d" , &n , &Padd , &Pfirst , &Pmod , &Pprod , &Cadd , &Cfirst , &Cmod , &Cprod , &Ladd , &Lfirst , &Lmod , &Lprod , &Radd , &Rfirst , &Rmod , &Rprod);
P[1] = Pfirst % Pmod;
for(i = 2 ; i <= n ; i ++ ) P[i] = ((ll)P[i - 1] * Pprod + Padd + i) % Pmod;
C[1] = Cfirst % Cmod;
for(i = 2 ; i <= n ; i ++ ) C[i] = ((ll)C[i - 1] * Cprod + Cadd + i) % Cmod;
L[1] = Lfirst % Lmod;
for(i = 2 ; i <= n ; i ++ ) L[i] = ((ll)L[i - 1] * Lprod + Ladd + i) % Lmod;
R[1] = Rfirst % Rmod;
for(i = 2 ; i <= n ; i ++ ) R[i] = ((ll)R[i - 1] * Rprod + Radd + i) % Rmod;
for(i = 1 ; i <= n ; i ++ )
{
if(L[i] > R[i]) swap(L[i] , R[i]);
a[i * 3 - 2] = data(L[i] , 1 , i);
a[i * 3 - 1] = data(R[i] , -1 , i);
a[i * 3] = data(P[i] , 0 , i);
v[i] = C[i];
}
sort(v + 1 , v + n + 1);
for(i = 1 ; i <= n ; i ++ ) C[i] = lower_bound(v + 1 , v + n + 1 , C[i]) - v;
sort(a + 1 , a + 3 * n + 1);
for(i = 1 ; i <= 3 * n ; i ++ )
{
if(a[i].org) update(C[a[i].id] , a[i].org , 1 , n , 1);
else if(si[1] >= a[i].id) ans = (ans + v[query(a[i].id , 1 , n , 1)]) % 19921228;
}
printf("%d\n" , ans);
return 0;
}

【bzoj2161】布娃娃 权值线段树的更多相关文章

  1. BZOJ 2161 布娃娃(权值线段树)

    题意 给n<1e5个娃娃,每个娃娃有属性\(p\),\(c\),\(l\),\(r\)(均在ll范围内),问你对每个娃娃\(i\),满足所有\(l_j\leq p_i\leq r_j\)的娃娃\ ...

  2. BZOJ_2161_布娃娃_权值线段树

    BZOJ_2161_布娃娃_权值线段树 Description 小时候的雨荨非常听话,是父母眼中的好孩子.在学校是老师的左右手,同学的好榜样.后来她成为艾利斯顿第二 代考神,这和小时候培养的良好素质是 ...

  3. 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings

    谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...

  4. 【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP

    2892: 强袭作战 Time Limit: 50 Sec  Memory Limit: 512 MBSubmit: 45  Solved: 30[Submit][Status][Discuss] D ...

  5. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

  6. 动态求区间K大值(权值线段树)

    我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和 ...

  7. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  8. 【BZOJ3685】【zkw权值线段树】普通van Emde Boas树

    原题传送门 因为马上要开始搞树套树了,所以学了一波权值线段树...毕竟是会点zkw线段树的,所以zkw线段树大法好! 解题思路: 介绍一下权值线段树吧,其实感觉就是线段树的本义,就是你用线段树维护了数 ...

  9. BZOJ_3685_普通van Emde Boas树_权值线段树

    BZOJ_3685_普通van Emde Boas树_权值线段树 Description 设计数据结构支持: 1 x  若x不存在,插入x 2 x  若x存在,删除x 3    输出当前最小值,若不存 ...

随机推荐

  1. 2018.5.21 . XMLSpy激活的方法

    127.0.0.1 altova.com #XMLspy 127.0.0.1 www.altova.com #XMLspy 127.0.0.1 link.altova.com #XMLspy 追加加到 ...

  2. OO2019第四单元作业总结

    一.本单元两次作业的架构设计  1.第一次作业 第一次作业由于时间仓促,没有过多的架构设计,就直接补全了所给的MyUmlInteraction类,导致整个程序的代码风格和效率都不高,在强测中也因此失掉 ...

  3. vue2.0在页面中自定义组件模块,以及页面与组件之间的数据传递

    1,在初始文件index.html中加入要引入的模块,注意驼峰命名的方式(我就是没写成驼峰,报错) <!DOCTYPE html> <html> <head> &l ...

  4. 列表与特殊字符,div(新手HTMLL基础)

    1.无序列表 -项目符号:实心圆(disc).方框(square).空心圆(circle) -列表<ul>---- 列表项<li>--- </li></ul& ...

  5. SAP 日志管理

    现在项目上自开发的dialog程序越来越多,有很多敏感数据需要像SAP标准的业务一样,能看到所有的修改日志,要想实现日志的功能,有以下几个办法: 办法一.建一个日志表,在原有表的基础上,加上日期和时间 ...

  6. k8s资源配置清单的书写格式(yaml文件)

    yaml文件书写格式:5大类:apiVersion: 选择kubectl api-versions里面存在的版本kind: 选择kubectl api-resources结果中的对象资源metadat ...

  7. Vue2+webpack+node 配置+入门+详解

    Vue2介绍 1.vue2.0 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. Vue 的核心库只关注视图层 采用单文件组件 复杂大型单页应用程序(SPA) 响 ...

  8. .net core IdentityServer4 使用query参数

    基本用法请参考官方文档:https://identityserver4.readthedocs.io/en/latest/index.html 这里不对具体用法进行说明,一般情况下,Startup添加 ...

  9. JS如何判断是否为ie浏览器的方法(包括IE10、IE11在内)

    判断是否IE浏览器用的是window.navigator.userAgent,跟踪这个信息,发现在开发环境,识别为IE10,但访问服务器则识别为IE11,但IE11的userAgent里是没有MSIE ...

  10. 精通SpringBoot--整合druid监控SQL执行

    咳咳,今天我们做些简单而实用的东西,使用springboot 整合alibaba的driud数据库监控工具.alibaba已经提供了spring-boot-starter的jar包了.先看pom.xm ...