pkusc 快到了……做点题涨涨 rp。

初见时 yy 了一个类似于归并的东西,\(O(n^2)\),50 分。

50 分 yy 做法

对于一个点,枚举他能到达的权值(假设这个权值在左子树,在右子树是一样的),选上这个点的概率就是“在左子树选上这个点的概率 \(\times\) (选择子结点最大值的概率 \(\times\) 右子树选出比这个点小的点的概率和+选择子结点最小值的概率 \(\times\) 右子树选出比这个点大的点的概率和)”。

100 分

我们发现,瓶颈在于合并。我们先想到启发式合并,然后就不会了。

我们又想到线段树合并。这里就参考ref这里就可以了。

#include <algorithm>
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, uu, num[300005], bb, rot[300005], tot, maxa, maxb, ans;
const int mod=998244353;
struct Node{
int l, r, v;
}nd[300005];
struct SGTNode{
int l, r, v, t;
}sgt[5000005];
int ksm(int a, int b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void insert(int &x, int l, int r, int v){
x = ++tot;
sgt[x].v = sgt[x].t = 1;
if(l==r) ;
else{
int mid=(l+r)>>1;
if(v<=mid) insert(sgt[x].l, l, mid, v);
else insert(sgt[x].r, mid+1, r, v);
}
}
void pushDown(int x){
if(!x || sgt[x].t<=1) return ;
sgt[sgt[x].l].t = (ll)sgt[sgt[x].l].t * sgt[x].t % mod;
sgt[sgt[x].r].t = (ll)sgt[sgt[x].r].t * sgt[x].t % mod;
sgt[x].v = (ll)sgt[x].v * sgt[x].t % mod;
sgt[x].t = 1;
}
int merge(int x, int y, int p){
if(!x && !y) return 0;
pushDown(x); pushDown(y);
if(!y){
maxa = (maxa + sgt[x].v) % mod;
sgt[x].t = ((maxb+p)%mod-(ll)2*maxb*p%mod+mod) % mod;
pushDown(x);
return x;
}
if(!x){
maxb = (maxb + sgt[y].v) % mod;
sgt[y].t = ((maxa+p)%mod-(ll)2*maxa*p%mod+mod) % mod;
pushDown(y);
return y;
}
sgt[x].r = merge(sgt[x].r, sgt[y].r, p);
sgt[x].l = merge(sgt[x].l, sgt[y].l, p);
sgt[x].v = (sgt[sgt[x].l].v + sgt[sgt[x].r].v) % mod;
return x;
}
void dfs(int x){
if(!nd[x].l)
insert(rot[x], 1, bb, nd[x].v);
else if(!nd[x].r){
dfs(nd[x].l);
rot[x] = rot[nd[x].l];
}
else{
dfs(nd[x].l);
dfs(nd[x].r);
maxa = maxb = 0;
rot[x] = merge(rot[nd[x].l], rot[nd[x].r], nd[x].v);
}
}
void getAns(int x, int l, int r){
if(!x) return ;
pushDown(x);
if(l==r)
ans = (ans + (ll)l*num[l]%mod*sgt[x].v%mod*sgt[x].v%mod) % mod;
else{
int mid=(l+r)>>1;
getAns(sgt[x].l, l, mid);
getAns(sgt[x].r, mid+1, r);
}
}
int main(){
cin>>n;
for(int i=1; i<=n; i++){
scanf("%d", &uu);
if(nd[uu].l) nd[uu].r = i;
else nd[uu].l = i;
}
int inv=ksm(10000, mod-2);
for(int i=1; i<=n; i++){
scanf("%d", &uu);
if(nd[i].l) nd[i].v = (ll)uu * inv % mod;
else{
nd[i].v = uu;
num[++bb] = uu;
}
}
sort(num+1, num+1+bb);
bb = unique(num+1, num+1+bb) - (num + 1);
for(int i=1; i<=n; i++)
if(!nd[i].l)
nd[i].v = lower_bound(num+1, num+1+bb, nd[i].v) - num;
dfs(1);
getAns(rot[1], 1, bb);
cout<<ans<<endl;
return 0;
}

loj2537 「PKUWC 2018」Minimax的更多相关文章

  1. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  2. 「PKUWC 2018」Minimax

    传送门:Here 一道线段树合并好题 如果要维护点$ x$的信息,相当于合并$ x$的两棵子树 对于这题显然有:任何叶子节点的权值都可能出现在其祖先上 因而我们只需要在线段树合并的时候维护概率即可 我 ...

  3. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  4. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  5. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  6. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  7. loj2538 「PKUWC 2018」Slay the Spire

    pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...

  8. loj2540 「PKUWC 2018」随机算法

    pkusc 快到了--做点题涨涨 rp. 记 \(f(S,i)\) 表示 \(S\) 这个集合是决计不能选的(要么属于独立集,要么和独立集相连),或称已经考虑了的,\(i\) 表示此集合对应的最大独立 ...

  9. 「PKUWC 2018」随机算法 (第二版,正解做法)

    上一版貌似是打了 O(3 ^ N) 暴力和 一条链的情况,得了60分.... 第一次做的时候光想练一练暴力...就没去想正解,谁知道正解比暴力好写不知道多少,mmp 设 f(S) 为 选集合S中的点可 ...

随机推荐

  1. css清除浮动好方法

    1.clear:both ==>IE6,7会有高度,所以去高度需要.clear{ clear:both; height:0px; margin:0; padding:0; width:0; bo ...

  2. 大数四则运算java(转)

    // 大数的四则运算 #include <iostream> #include <string> #include <algorithm> using namesp ...

  3. 详细讲解:tp3.2.3生成验证码并进行验证(ajax校验返回及自定义返回)

    TP3.2.3的验证码也是比较经典的小功能,框架对这个小功能的封装还是比较完美的,废话不多说,开始记录 1.总体效果: (1)初始界面 (2)自定义的返回校验效果: (3)ajax的校验返回: 2.代 ...

  4. HDU4302 线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4302 , 可以用线段树,也可以STL中的map,multiset,优先队列中的任何一个解决(可我只会线 ...

  5. hdu-2680 Choose the best route---dijkstra+反向存图或者建立超级源点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2680 题目大意: 给你一个有向图,一个起点集合,一个终点,求最短路 解题思路: 1.自己多加一个超级 ...

  6. PS 厘米与像素切换

    方法一: 快捷键 ctrl + r   打开标尺将鼠标放在标尺刻度上右键 出现菜单里修改即可: 方法二: 编辑---首选项---单位与标尺 修改即可:

  7. 2018.6.7. 云服务器Centos系统使用yum或者rpm安装包时出现问题,安装时报出错误:

    当我向终端输入 sudo yum groupinstall chinese-support 语言安装包的时候显示下面的错误 error: rpmdb: BDB0113 Thread/process 3 ...

  8. imfilter()用法

    功能:对图像进行滤波. 用法: g = imfilter(f, w, filtering_mode, boundary_options, size_options) 其中,f:输入图像,w:滤波掩模, ...

  9. ZJOI2004 午餐

    题目传送门 嗯--我承认我看了题解,不过好歹有了点自己的思路,大约蒙出来了\(30\%\)(个人感觉)-- 学会\(DP\),任重而道远啊! Step1.贪心排序 先将每个人按吃饭的快慢排序,然后再进 ...

  10. 10个HTML5 实战教程 提升你的综合开发能力

    HTML5 作为下一代网站开发技术,无论你是一个 Web 开发人员或者想探索新的平台的游戏开发者,都值得去研究.借助尖端功能,技术和 API,HTML5 允许你创建响应性.创新性.互动性以及令人惊叹的 ...