机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

思路:注意是只有一台机器,所以时间是累加的,那么影响到[j,N]。所以列出方程: f[i]=min():  f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M)

直接dp复杂度是O(N^2),使用效率优化:

//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
其中k之和i有关,y之和j有关,b就是f[i],c是常数:k=sum1[i],y=f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M;

可以看到我们需要维护一个斜率上升的凸包,由于K=sum1[i]没有说递增,所以我们不能弹出栈顶,求的时候用二分求得凸包极值。

注意:1,二分的时候,二分区间[0,top],0代表的是,从头到尾都选,不能忽略。

     2,每个新的i都要插入,插入当前i时,要维护斜率递增。

 3,维护的图像的x和y分别的 y=kx+b的x和y,所以维护斜率,弹出栈尾比较斜率时,x是sum2[q[top]],而不是q[top];

//b=y-kx+c; --> f[i]=(-sum1[i]*sum2[j])+(f[j]+sum1[j]*sum2[j]-sum*sum1[j]-M*sum2[j])+(M*sum+sum*sum1[j]);
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
ll sum1[maxn],sum2[maxn],f[maxn],M;
int q[maxn],top,N;
ll Y(int j){ return f[j]-sum2[N]*sum1[j]+sum2[j]*sum1[j]-sum2[j]*M; }
ll getans(int i,int j){return f[j]+(sum2[N]-sum2[j])*(sum1[i]-sum1[j]+M);; }
int main()
{
int i; scanf("%d%lld",&N,&M);
for(i=;i<=N;i++){
scanf("%lld%lld",&sum1[i],&sum2[i]);
sum1[i]+=sum1[i-]; sum2[i]+=sum2[i-];
}
for(int i=;i<=N;i++){
int L=,R=top,ans=top;
while(L<=R){
int Mid=(L+R)>>;
if(getans(i,q[Mid])<=getans(i,q[Mid+])) R=Mid-,ans=Mid; else L=Mid+;
}
f[i]=getans(i,q[ans]);
while (top>&& 1ll*(Y(q[top])-Y(q[top-]))*(sum2[i]-sum2[q[top]])>=(Y(i)-Y(q[top]))*(sum2[q[top]]-sum2[q[top-]]))
top--;
q[++top]=i; //while语句里不是dx的时候不是下边之间减,是方程组的sum2来减。
}
printf("%lld\n",f[N]);
return ;
}

BZOJ2726:任务安排(DP+斜率优化+二分)的更多相关文章

  1. BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分

    BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...

  2. P3994 高速公路 树形DP+斜率优化+二分

    $ \color{#0066ff}{ 题目描述 }$ C国拥有一张四通八达的高速公路网树,其中有n个城市,城市之间由一共n-1条高速公路连接.除了首都1号城市,每个城市都有一家本地的客运公司,可以发车 ...

  3. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  4. DP斜率优化总结

    目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...

  5. HDU 3507 [Print Article]DP斜率优化

    题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...

  6. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  7. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  8. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  9. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

随机推荐

  1. 【转载】ASP.NET之旅--深入浅出解读IIS架构

    在学习Asp.net时,发现大多数作者都是站在一个比较高的层次上讲解Asp.Net. 他们耐心. 细致地告诉你如何一步步拖放控件. 设置控件属性.编写 CodeBehind代码,以实现某个特定的功能. ...

  2. robotframe使用之滚动条

    方法一:Excute JavaScript window.scrollTo(0,document.body.scrollHeight); 方法二:Execute javascript document ...

  3. freemark2pdf

    freemarker+ITextRenderer 生成html转pdf 博客分类: ITextRenderer ITextRenderer  网上已经有比较多的例子 写这个 但是很多都是简单的 dem ...

  4. 原创 | 我被面试官给虐懵了,竟然是因为我不懂Spring中的@Configuration

    GitHub 3.7k Star 的Java工程师成神之路 ,不来了解一下吗? GitHub 3.7k Star 的Java工程师成神之路 ,真的不来了解一下吗? GitHub 3.7k Star 的 ...

  5. python学习(十一)函数、作用域、参数

    定义和调用函数 在这里函数的定义和调用和一般的语句没什么不一样,感觉函数也是对象 #!/usr/bin/python def times(x, y):                # 定义函数    ...

  6. erlang中字符编码转换(转)

    转自:http://www.thinksaas.cn/group/topic/244329/ 功能说明: erlang中对各种语言的编码支持不足,此代码是使用erlang驱动了著名的iconv编码库来 ...

  7. 多媒体开发之---live555 分析客户端

    live555的客服端流程:建立任务计划对象--建立环境对象--处理用户输入的参数(RTSP地址)--创建RTSPClient实例--发出DESCRIBE--发出SETUP--发出PLAY--进入Lo ...

  8. C#连接Oracle的问题(不安装客户端)

     win7环境,本地没有安装oracle或者客户端,现在需要程序里连接远程oracle DB: 如果采用System.Data.OracleClient肯定是不行的,这个要安装客户端的: 所以就尝试O ...

  9. Jmeter文章索引贴

    一.基础部分: 使用Jmeter进行http接口测试 Jmeter之Http Cookie Manager Jmeter之HTTP Request Defaults Jmeter之逻辑控制器(Logi ...

  10. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...