https://www.luogu.org/problemnew/show/UVA11424

原本以为是一道四倍经验题来的。

因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬。

那么我们就需要引入一个整除分块!

首先预处理欧拉函数的前缀和,然后丢进分块里面搞一搞。

那么就是 \(O(n+t\sqrt{n})\)

#include<bits/stdc++.h>
using namespace std;
#define ll long long #define N 4000005
int phi[N],pri[N],cntpri=0;
bool notpri[N]; ll prefix[N]; void sieve_phi(int n) {
notpri[1]=phi[1]=1;
prefix[0]=0;
prefix[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++cntpri]=i,phi[i]=i-1;
for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
if(i%pri[j])
phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
prefix[i]=prefix[i-1]+phi[i];
}
} ll sumfenkuai(ll n) {
ll ans=0;
for(ll l=1,r; l<=n; l=r+1) {
if(n/l!=0) {
r=min(n/(n/l),n);
} else {
//n/l==0,意味着l>n,所有的后面的下整都是0,分成同一块
r=n;
break;
} //phi=?
//sum(phi)=?
//c=n/l=n/r //ans=sum_d=1^n:(sum(d)*c)
ans+=(n/l)*(n/l)*(prefix[r]-prefix[l-1]);
}
return ans;
} int main() {
sieve_phi(100000+5);
int n;
while(cin>>n) {
ll ans=sumfenkuai(n);
cout<<ans<<endl;
}
}

洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块的更多相关文章

  1. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  2. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  3. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  4. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  5. [洛谷P1390]公约数的和·莫比乌斯反演

    公约数的和 传送门 分析 这道题很显然答案为 \[Ans=\sum_{i=1}^n\sum_{j=i+1}^n (i,j)\] //其中\((i,j)\)意味\(gcd(i,j)\) 这样做起来很烦, ...

  6. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  7. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  8. 洛谷P3455 [POI2007]ZAP-Queries (莫比乌斯反演)

    题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\ ...

  9. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

随机推荐

  1. Finder 快捷键

    记录几个常用的 Finder 快捷键: 复制 Finder 里选中的路径:option+cmd+c 地址栏跳到指定路径:shift+cmd+g 增加标签:cmd+t 显示/隐藏 标签栏:shift+c ...

  2. Mysql 存储过程使用游标

    -- 完整例子 CREATE PROCEDURE test BEGIN -- 定义参数    DECLARE _id INT; -- 定义游标    DECLARE no_more_products ...

  3. hdu 3932 Groundhog Build Home

    Groundhog Build Home Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Ot ...

  4. SAM4E单片机之旅——11、UART之PDC收发

    使用PDC进行数据的收发能减少CPU的开销.这次就使用PDC进行UART数据的接收与发送,同时,也利用TC也实现了PDC的接收超时. PDC是针对外设的DMA控制器.对比DMA控制器,它更为简便,与相 ...

  5. 自动化测试框架selenium+java+TestNG——TestNG详解

    TestNG按顺序执行case package com.testngDemo; import org.testng.annotations.AfterClass; import org.testng. ...

  6. 动态注册BroadcastReceiver

    1. [代码][Java]代码      package com.zjt.innerreceiver;   import android.app.Service; import android.con ...

  7. linux应用之nginx的安装及配置(centos)

    Ubuntu/CentOS 系统上安装与配置Nginx 一.在线安装: Ubuntu:sudo apt-get install nginx CentOS: sudo yum install nginx ...

  8. map的详细用法 (转

    map的详细用法: map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能 力,由于这个特性,它完成有可能在我 ...

  9. 值域线段树 bzoj 4627

    这是题目链接4627: [BeiJing2016]回转寿司 题目大意: 给定n个数,求有多少个字段和在 满足 L<=sum<=R; 解题思路 需要解这个题目,需要有线段树加可持续化的思想, ...

  10. CISCO-配置SSH

    PC直接连在交换机端口上,PC的ip地址是:192.168.1.1/24 在交换机的操作步骤如下: 1.设置交换机管理ip Switch#conf t Switch(config)#int vlan ...