题目链接:http://poj.org/problem?id=3744

题意:

  有n个地雷,位置为pos[i]。

  在每个位置,你向前走一步的概率为p,向前走两步的概率为1-p。

  你的初始位置为1。

  问你通过雷区的概率。

题解:

  表示状态:

    dp[i] = probability moving to i

    表示走到i的概率

  找出答案:

    ans = dp[last_mine+1]

    last_mine:最右边一颗雷的位置

  如何转移:

    dp[i] = dp[i-1] * p + dp[i-2] * (1-p)

    if(i is a mine) dp[i] = 0

    对于位置i,有可能是从i-1走来的,也有可能是从i-2走来的。

    加法原理。

  边界条件:

    dp[1] = 1

    初始位置为1。

  优化:

    矩阵快速幂。

    对于某一段没有地雷的区间,是满足矩阵快速幂的(只用到递推式,dp不改为0)。

    所以分段进行矩阵快速幂。

    

    将雷区划分为n段:

    1~pos[1], pos[1]+1~pos[2], pos[2]+1~pos[3]...

    

    容斥原理:P(通过某一段雷区) = 1 - P(踩到最右边的雷)

    乘法原理:P(通过总雷区) = ∏ P(通过每一段雷区)

    矩阵格式:

    

    初始矩阵:

    

    特殊矩阵:

    

AC Code:

 // state expression:
// dp[i] = probability moving to i
//
// find the answer:
// dp[last mine + 1]
//
// transferring:
// dp[i] = dp[i-1] * p + dp[i-2] * (1-p)
//
// boundary:
// dp[1] = 1
// others = 0
//
// optimization:
// quick pow for matrix
// from x to y
// res = start * special ^ (y-x)
// dp[i] = res.val[0][0]
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MAX_N 15
#define MAX_L 5 using namespace std; struct Mat
{
int n;
int m;
double val[MAX_L][MAX_L];
Mat()
{
n=;
m=;
memset(val,,sizeof(val));
}
void print_mat()
{
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
cout<<val[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
}
}; int n;
int pos[MAX_N];
double p;
double ans; Mat make_unit(int k)
{
Mat mat;
mat.n=k;
mat.m=k;
for(int i=;i<k;i++)
{
mat.val[i][i]=;
}
return mat;
} Mat make_start()
{
Mat mat;
mat.n=;
mat.m=;
mat.val[][]=;
mat.val[][]=;
return mat;
} Mat make_special()
{
Mat mat;
mat.n=;
mat.m=;
mat.val[][]=;
mat.val[][]=-p;
mat.val[][]=;
mat.val[][]=p;
return mat;
} Mat mul_mat(const Mat &a,const Mat &b)
{
Mat c;
if(a.m!=b.n)
{
cout<<"Error: mul_mat"<<endl;
return c;
}
c.n=a.n;
c.m=b.m;
for(int i=;i<a.n;i++)
{
for(int j=;j<b.m;j++)
{
for(int k=;k<a.m;k++)
{
c.val[i][j]+=a.val[i][k]*b.val[k][j];
}
}
}
return c;
} Mat quick_pow_mat(Mat mat,long long k)
{
Mat ans;
if(mat.n!=mat.m)
{
cout<<"Error: quick_pow_mat"<<endl;
return ans;
}
ans=make_unit(mat.n);
while(k)
{
if(k&)
{
ans=mul_mat(ans,mat);
}
mat=mul_mat(mat,mat);
k>>=;
}
return ans;
} void read()
{
pos[]=;
for(int i=;i<=n;i++)
{
cin>>pos[i];
}
} void solve()
{
sort(pos+,pos++n);
Mat special=make_special();
ans=;
for(int i=;i<=n;i++)
{
Mat start=make_start();
Mat res=mul_mat(start,quick_pow_mat(special,pos[i]-pos[i-]));
ans*=(-res.val[][]);
}
} void print()
{
printf("%.7f\n",ans);
} int main()
{
while(cin>>n>>p)
{
read();
solve();
print();
}
}

POJ 3744 Scout YYF I:概率dp的更多相关文章

  1. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  2. poj 3744 Scout YYF I(概率dp,矩阵优化)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5020   Accepted: 1355 Descr ...

  3. poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)

    F - Scout YYF I Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  4. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  5. POJ 3744 Scout YYF I

    分段的概率DP+矩阵快速幂                        Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  6. POJ-3744 Scout YYF I 概率DP

    题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...

  7. poj3744 Scout YYF I[概率dp+矩阵优化]

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8598   Accepted: 2521 Descr ...

  8. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  9. POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)

    http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...

随机推荐

  1. Oracle Sequence用plsql修改

    在plsql中,打开Objects窗口   找Sequences文件夹>你需要修改的Sequence   选中你需要修改的sequence,右键edit(编辑)     OK!

  2. awakeFromNib方法和viewDidLoad方法区别

    当.nib文件被加载的时候,会发送一个awakeFromNib的消息到.nib文件中的每个对象,每个对象都可以定义自己的awakeFromNib函数来响应这个消息,执行一些必要的操作. 也就是说只有通 ...

  3. 【转载】Asp.Net页面生命周期

    一.什么是Asp.Net页面生命周期 当我们在浏览器地址栏中输入网址,回车查看页面时,这时会向服务器端(IIS)发送一个request请求,服务器就会判断发送过来的请求页面,  完全识别 HTTP 页 ...

  4. iOS多线程与网络开发之小文件上传

    郝萌主倾心贡献,尊重作者的劳动成果,请勿转载. /** 取得本地文件的MIMEType */ 2 - (void) getMIMEType { 3 // Socket 实现断点上传 4 5 //apa ...

  5. 浅谈 Fork/Join

    fork/join的java7新添加的功能,能够把它理解成一个并发框架. 我们通过fork/join能将一个可分解的大任务.分解成多个子任务同步运行.运行完成后,在将各子任务的结果进行合并,得到终于的 ...

  6. Android应用的电量消耗和优化的策略

     对于Android移动应用的开发者来说,耗电量的控制一直是个老大难问题.      我们想要控制耗电量,必须要有工具或者方法比较准确的定位应用的耗电情况.下面,我们先来分析下如何计算android应 ...

  7. 软件工程第3次作业——Visual Studio 2017下针对代码覆盖率的C/C++单元测试

    本项目Github地址(同时包括两个作业项目): Assignment03 -- https://github.com/Oberon-Zheng/SoftwareEngineeringAssignme ...

  8. 华为p20:拍美景,听讲解,旅行更智能

    华为P20轰轰烈烈地上市了,本来对手机并不感冒的我,看到身边的好友换了P20,不禁感慨:这个月的活又要白干了,全部都要上交给华为,因为这款手机完全戳中了旅游爱好者的痛点. 痛点一:丢弃笨重的单反,手机 ...

  9. attr/attrs模块

    attr简介 开源库,提供了为函数或类提供更直接的创建属性的方法. Github or PyPi 用法 from attr import attrs, attrib @attrs class Foo: ...

  10. 【转】Android7.0版本以上的手机Eclipse无法打出LogCat

    本来想用Eclipse连下手机看下log的,结果LogCat没打出来任何信息,起初怀疑是我的DDMS有问题,结果连了下我老大的手机,完美打出log,看了下Android系统,老大的是6.0的,我的7. ...