示例数据:

0.00632  18.00   2.310  0  0.5380  6.5750  65.20  4.0900   1  296.0  15.30 396.90   4.98  24.00
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60
0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70
0.03237 0.00 2.180 0 0.4580 6.9980 45.80 6.0622 3 222.0 18.70 394.63 2.94 33.40
0.06905 0.00 2.180 0 0.4580 7.1470 54.20 6.0622 3 222.0 18.70 396.90 5.33 36.20
0.02985 0.00 2.180 0 0.4580 6.4300 58.70 6.0622 3 222.0 18.70 394.12 5.21 28.70
0.08829 12.50 7.870 0 0.5240 6.0120 66.60 5.5605 5 311.0 15.20 395.60 12.43 22.90
0.14455 12.50 7.870 0 0.5240 6.1720 96.10 5.9505 5 311.0 15.20 396.90 19.15 27.10
0.21124 12.50 7.870 0 0.5240 5.6310 100.00 6.0821 5 311.0 15.20 386.63 29.93 16.50
0.17004 12.50 7.870 0 0.5240 6.0040 85.90 6.5921 5 311.0 15.20 386.71 17.10 18.90
0.22489 12.50 7.870 0 0.5240 6.3770 94.30 6.3467 5 311.0 15.20 392.52 20.45 15.00
0.11747 12.50 7.870 0 0.5240 6.0090 82.90 6.2267 5 311.0 15.20 396.90 13.27 18.90
0.09378 12.50 7.870 0 0.5240 5.8890 39.00 5.4509 5 311.0 15.20 390.50 15.71 21.70
0.62976 0.00 8.140 0 0.5380 5.9490 61.80 4.7075 4 307.0 21.00 396.90 8.26 20.40
0.63796 0.00 8.140 0 0.5380 6.0960 84.50 4.4619 4 307.0 21.00 380.02 10.26 18.20
0.62739 0.00 8.140 0 0.5380 5.8340 56.50 4.4986 4 307.0 21.00 395.62 8.47 19.90
1.05393 0.00 8.140 0 0.5380 5.9350 29.30 4.4986 4 307.0 21.00 386.85 6.58 23.10

代码:最大值与最小值之差:ptp()

# k-Nearest Neighbor
#----------------------------------
#
# This function illustrates how to use
# k-nearest neighbors in tensorflow
#
# We will use the 1970s Boston housing dataset
# which is available through the UCI
# ML data repository.
#
# Data:
#----------x-values-----------
# CRIM : per capita crime rate by town
# ZN : prop. of res. land zones
# INDUS : prop. of non-retail business acres
# CHAS : Charles river dummy variable
# NOX : nitrix oxides concentration / 10 M
# RM : Avg. # of rooms per building
# AGE : prop. of buildings built prior to 1940
# DIS : Weighted distances to employment centers
# RAD : Index of radian highway access
# TAX : Full tax rate value per $10k
# PTRATIO: Pupil/Teacher ratio by town
# B : 1000*(Bk-0.63)^2, Bk=prop. of blacks
# LSTAT : % lower status of pop
#------------y-value-----------
# MEDV : Median Value of homes in $1,000's import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
from tensorflow.python.framework import ops
ops.reset_default_graph() # Create graph
sess = tf.Session() # Load the data
housing_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
cols_used = ['CRIM', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT']
num_features = len(cols_used)
housing_file = requests.get(housing_url)
housing_data = [[float(x) for x in y.split(' ') if len(x)>=1] for y in housing_file.text.split('\n') if len(y)>=1] y_vals = np.transpose([np.array([y[13] for y in housing_data])])
x_vals = np.array([[x for i,x in enumerate(y) if housing_header[i] in cols_used] for y in housing_data]) ## Min-Max Scaling
x_vals = (x_vals - x_vals.min(0)) / x_vals.ptp(0) # Split the data into train and test sets
np.random.seed(13) #make results reproducible
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices] # Declare k-value and batch size
k = 4
batch_size=len(x_vals_test) # Placeholders
x_data_train = tf.placeholder(shape=[None, num_features], dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, num_features], dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Declare distance metric
# L1
distance = tf.reduce_sum(tf.abs(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), axis=2) # L2
#distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), reduction_indices=1)) # Predict: Get min distance index (Nearest neighbor)
#prediction = tf.arg_min(distance, 0)
top_k_xvals, top_k_indices = tf.nn.top_k(tf.negative(distance), k=k)
x_sums = tf.expand_dims(tf.reduce_sum(top_k_xvals, 1),1)
x_sums_repeated = tf.matmul(x_sums,tf.ones([1, k], tf.float32))
x_val_weights = tf.expand_dims(tf.div(top_k_xvals,x_sums_repeated), 1) top_k_yvals = tf.gather(y_target_train, top_k_indices)
prediction = tf.squeeze(tf.matmul(x_val_weights,top_k_yvals), axis=[1]) # Calculate MSE
mse = tf.div(tf.reduce_sum(tf.square(tf.subtract(prediction, y_target_test))), batch_size) # Calculate how many loops over training data
num_loops = int(np.ceil(len(x_vals_test)/batch_size)) for i in range(num_loops):
min_index = i*batch_size
max_index = min((i+1)*batch_size,len(x_vals_train))
x_batch = x_vals_test[min_index:max_index]
y_batch = y_vals_test[min_index:max_index]
predictions = sess.run(prediction, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
y_target_train: y_vals_train, y_target_test: y_batch})
batch_mse = sess.run(mse, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
y_target_train: y_vals_train, y_target_test: y_batch}) print('Batch #' + str(i+1) + ' MSE: ' + str(np.round(batch_mse,3))) # Plot prediction and actual distribution
bins = np.linspace(5, 50, 45) plt.hist(predictions, bins, alpha=0.5, label='Prediction')
plt.hist(y_batch, bins, alpha=0.5, label='Actual')
plt.title('Histogram of Predicted and Actual Values')
plt.xlabel('Med Home Value in $1,000s')
plt.ylabel('Frequency')
plt.legend(loc='upper right')
plt.show()

tensorflow knn 预测房价 注意有 Min-Max Scaling的更多相关文章

  1. Tensorflow 线性回归预测房价实例

    在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...

  2. 在一定[min,max]区间,生成n个不重复的随机数的封装函数

    引:生成一个[min,max]区间的一个随机数,随机数生成相关问题参考→链接 var ran=parseInt(Math.random()*(max-min+1)+min); //生成一个[min,m ...

  3. LINQ to SQL Count/Sum/Min/Max/Avg Join

    public class Linq { MXSICEDataContext Db = new MXSICEDataContext(); // LINQ to SQL // Count/Sum/Min/ ...

  4. 2.10 用最少次数寻找数组中的最大值和最小值[find min max of array]

    [本文链接] http://www.cnblogs.com/hellogiser/p/find-min-max-of-array.html [题目] 对于一个由N个整数组成的数组,需要比较多少次才能把 ...

  5. LINQ Count/Sum/Min/Max/Avg

    参考:http://www.cnblogs.com/peida/archive/2008/08/11/1263384.html Count/Sum/Min/Max/Avg用于统计数据,比如统计一些数据 ...

  6. 【转载】:【C++跨平台系列】解决STL的max()与numeric_limits::max()和VC6 min/max 宏冲突问题

    http://www.cnblogs.com/cvbnm/articles/1947743.html 多年以前,Microsoft 幹了一件比 #define N 3 還要蠢的蠢事,那就是在 < ...

  7. LINQ to SQL 语句(3) 之 Count/Sum/Min/Max/Avg

    LINQ  to SQL 语句(3) 之  Count/Sum/Min/Max/Avg [1] Count/Sum 讲解 [2] Min 讲解 [3] Max 讲解 [4] Average 和 Agg ...

  8. [转]LINQ语句之Select/Distinct和Count/Sum/Min/Max/Avg

    在讲述了LINQ,顺便说了一下Where操作,这篇开始我们继续说LINQ语句,目的让大家从语句的角度了解LINQ,LINQ包括LINQ to Objects.LINQ to DataSets.LINQ ...

  9. 动态规划——min/max的单调性优化总结

    一般形式: $max\{min(ax+by+c,dF(x)+eG(y)+f)\},其中F(x)和G(y)是单调函数.$ 或 $min\{max(ax+by+c,dF(x)+eG(y)+f)\},其中F ...

随机推荐

  1. mongodb: 安装 建/删 库,表

    mongodb的安装 下载mongodb www.mongodb.org 下载最新stable版 解压文件 3.不用编译,解压之后本身就是编译后的二进制可执行文件 解压之后,目录格式如下 在bin目录 ...

  2. C#中的Dictionary字典类常用方法介绍

    using System.Collections.Generic;//引用命名空间//Dictionary可以理解为散列集合 public class DictionaryTest { public ...

  3. C#高级编程---暂停计划

    学了两个半月的C#高级编程这本书,看到了第三部分,说实话,我有点怂了,我认怂,临时先放一下,博客暂停,由于我的水平确实不会了,在写下去也是自欺欺人,我决定先研究研究我比較喜欢的脚本语言JS,開始写的, ...

  4. CentOS6.5下Oracle11G-R2安装、卸载

    CentOS6.5下Oracle11G-R2安装.卸载 资源下载地址(包含本人全部安装过程中,系统备份文件):http://download.csdn.net/detail/attagain/7700 ...

  5. Java下HttpUnit和Jsoup的Http抓取

    简单记录下:搜集信息-分析问题-解决问题 关于html文档的操作现成库有: HttpUnit 很老了,不更了 http://www.httpunit.org/  20 May 2008 HttpUni ...

  6. SpringMvc自动代理

    自动配置的好处是不需要挨个 实现[org.springframework.aop.framework.ProxyFactoryBean] ,只需要 advisor 配置和 <bean id=&q ...

  7. 移动应用开发测试工具Bugtags集成和使用教程【转载】

    前段时间,有很多APP突然走红,最终却都是樱花一现.作为一个创业团队,突然爆红是非常难得的机会.然并卵,由于没有经过充分的测试,再加上用户的激增,APP闪退.服务器数据异常等问题就被暴露出来,用户的流 ...

  8. Xenomai PC开发环境

    这两天总在纠结编译一个PC机上的Xenomai开发环境,选择编译器.kernel版本和IPIP版本,但是今天忽然想到,上位机只是个开发环境,只要能编译.能运行就可以了,实时性根本不是关注的东西.而Xe ...

  9. 使用Excel2007去反复功能时要注意的一个问题

    作者:iamlaosong Excel2007有个去反复功能(菜单:数据----删除反复项).非常实用,过去须要用VBA编程实现的功能,如今点击一下图标即可了.去反复通常是指定某列或者某几列.依据这指 ...

  10. MongoDB水平分片集群(转)

    为何需要水平分片 1 减少单机请求数,将单机负载,提高总负载 2 减少单机的存储空间,提高总存空间. 下图一目了然: mongodb sharding 服务器架构 简单注解: 1 mongos 路由进 ...