题目链接:https://vjudge.net/problem/HDU-5950

Recursive sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2727    Accepted Submission(s): 1226

Problem Description
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right. 
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
 
Output
For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
 
Sample Input
2
3 1 2
4 1 10
 
Sample Output
85
369

Hint

In the first case, the third number is 85 = 2*1十2十3^4.
In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.

 
Source
 
Recommend
jiangzijing2015
 

题意:

求 f(n) = f(n−1) + 2*f(n−2) + n^4,其中 f(1)=a,f(2)=b

题解:

典型的矩阵快速幂的运用。关键是i^4怎么维护?我们可以当成求第i+1项,那么i^4就变成了(i+1)^4。那么这时我们可以用二项式定理从i^4、i^3、i^2、i^1、i^0的组合中得到(i+1)^4。也就是说总共需要维护:f[i+1]、f[i]、(i+1)^4、(i+1)^3、(i+1)^2、(i+1)^1、(i+1)^0。矩阵如下:

代码如下:

 #include <bits/stdc++.h>
#define rep(i,s,t) for(int (i)=(s); (i)<=(t); (i)++)
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const LL mod = ;
const int maxn = 1e5; struct Mat
{
LL mat[][];
void init()
{
rep(i,,) rep(j,,)
mat[i][j] = (i==j);
}
}; Mat p = { , , , , , , ,
, , , , , , ,
, , , , , , ,
, , , , , , ,
, , , , , , ,
, , , , , , ,
, , , ,, ,
}; Mat mul(Mat x, Mat y)
{
Mat s;
ms(s.mat,);
rep(i,,) rep(j,,) rep(k,,)
s.mat[i][j] += (x.mat[i][k]*y.mat[k][j])%mod, s.mat[i][j] %= mod;
return s;
} Mat qpow(Mat x, LL y)
{
Mat s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
LL n, a, b;
scanf("%lld%lld%lld",&n,&a,&b);
if(n == )
{
printf("%lld\n",a);
continue;
}
if(n == )
{
printf("%lld\n",b);
continue;
} Mat x = p;
x = qpow(x, n-); LL ans = ;
ans = (ans + b*x.mat[][]) % mod;
ans = (ans + a*x.mat[][]%mod) % mod;
ans = (ans + *x.mat[][]%mod) % mod;
ans = (ans + *x.mat[][]%mod) % mod;
ans = (ans + *x.mat[][]%mod) % mod;
ans = (ans + *x.mat[][]%mod) % mod;
ans = (ans+x.mat[][]) % mod;
printf("%lld\n",ans);
}
}

HDU5950 Recursive sequence —— 矩阵快速幂的更多相关文章

  1. HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)

    题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...

  2. HDU5950 Recursive sequence (矩阵快速幂)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  3. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  4. 5950 Recursive sequence (矩阵快速幂)

    题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...

  5. CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs

    题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ ...

  6. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  8. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  9. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

随机推荐

  1. ubuntu下某些文件目录

    1.#include <stdio.h> 2.#include <stdlib.h> stdio.h和stdlib.h的路径:/usr/include

  2. Segmentation fault(core dumped) 调试

    ReadingList: https://mytechrants.wordpress.com/2009/05/22/debugging-a-segmentation-fault-using-gdb/ ...

  3. mysql_config_editor使用简介

      原文 : http://blog.itpub.net/29773961/viewspace-1817640/   ----------------------------------------- ...

  4. Naive Bayesian文本分类器

    贝叶斯学习方法中有用性非常高的一种为朴素贝叶斯学习期,常被称为朴素贝叶斯分类器. 在某些领域中与神经网络和决策树学习相当.尽管朴素贝叶斯分类器忽略单词间的依赖关系.即如果全部单词是条件独立的,但朴素贝 ...

  5. c#打包文件解压缩 C#中使用委托、接口、匿名方法、泛型委托实现加减乘除算法 一个简单例子理解C#的协变和逆变 对于过长字符串的大小比对

    首先要引用一下类库:using Ionic.Zip;这个类库可以到网上下载. 下面对类库使用的封装方法: 得到指定的输入流的ZIP压缩流对象 /// <summary> /// 得到指定的 ...

  6. Hdu-1565 方格取数(1) (状态压缩dp入门题

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  7. Process Autocad by python

    一.处理AutoCad模块 -pyautocad 1.安装 pip install pyautocad 注:1.该操作会自动安装 comtypes模块,如果其他方式安装,请自行安装comtypes模块 ...

  8. python--函数嵌套 命名空间

    函数的嵌套调用 def func(): print(123) def func2(): func() print(345) func2() #结果:123 345 函数的嵌套定义 def func() ...

  9. caffe2 安装与介绍

    http://blog.csdn.net/yan_joy/article/details/70241319 标签: 深度学习 2017-04-19 15:31 5970人阅读 评论(0) 收藏 举报 ...

  10. VMware安装ubuntu学习笔记(只是笔记)

    VMware安装ubuntu开机黑屏/死机 1- Edit Ubuntu VM Configuration file (.vmx) 2- Add the following line cpuid.1. ...