【题解】P4178 Tree

一道点分治模板好题

不知道是不是我见到的题目太少了,为什么这种题目都是暴力开值域的桶QAQ??

问点对,考虑点分治吧。直接用值域树状数组开下来,统计的时候直接往树状数组里面查询。记得每一层先把这一层的答案统计一下,统计的方法就是刚刚讲的在桶里查。

问题是回溯,值域不大,所以常数还可以,但是我们最好还是开个\(temp\)把我们做修改的地方记录一下,在\(calc\)返回的时候直接回溯。

时间复杂度\(nlog^2n\) 有一些细节需要注意。比如要把\(d[]\)的先统计进去。这一部分答案是从节点到根,没有被点分治覆盖到。

#include<bits/stdc++.h>

using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
#define lowbit(x) ((x)&(-x))
TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=40000+15;
int n,m;
struct E{
int to,w,nx;
}e[maxn<<1];
int head[maxn];
int cnt;
inline void add(int fr,int to,int w,bool f){
e[++cnt]=(E){to,w,head[fr]};
head[fr]=cnt;
if(f)
add(to,fr,w,0);
}
bool usd[maxn];
int siz[maxn];
int spa[maxn];
int sav[maxn];
int d[maxn];
int rt;
int k;
int data[20005];
int q[maxn];
int sum;
int ans;
inline void add(int x,int qaq){
for(register int t=x+1;t<=20001;t+=lowbit(t))data[t]+=qaq;
}
inline int ask(int x){register int ret=0;
for(register int t=Min(x+1,20001);t>0;t-=lowbit(t))ret+=data[t];
return ret;
} void dfsroot(int now,int last){
siz[now]=1;
spa[now]=0;
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsroot(e[t].to,now);
siz[now]+=siz[e[t].to];
spa[now]=Max(spa[now],siz[e[t].to]);
}
}
spa[now]=Max(spa[now],sum-siz[now]);
if(spa[now]<spa[rt]||rt==0)
rt=now;
} void dfsdis(int now,int last,int ew){
d[now]=d[last]+ew;
sav[++sav[0]]=d[now];
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsdis(e[t].to,now,e[t].w);
}
}
} inline void calc(int now){
register int p=0;
ERP(t,now){
if(!usd[e[t].to]){
sav[0]=0;
dfsdis(e[t].to,0,e[t].w); RP(i,1,sav[0])
ans+=ask(k-sav[i]);
RP(i,1,sav[0])
if(sav[i]<=k) ans++;
RP(i,1,sav[0]) add(sav[i],1);
RP(i,1,sav[0]) q[++p]=sav[i];
}
} RP(t,1,p)
add(q[t],-1); } void solve(int now){
usd[now]=1;
calc(now);
ERP(t,now){
if(!usd[e[t].to]){
sum=siz[e[t].to];
rt=0;
dfsroot(e[t].to,0);
solve(rt);
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif n=qr(1); for(register int t=1,t1,t2,t3;t<n;++t){
t1=qr(1);
t2=qr(1);
t3=qr(1);
add(t1,t2,t3,1);
}
k=qr(1);
sum=n;
dfsroot(1,0);
solve(rt);
cout<<ans<<endl;
return 0; }

【题解】[P4178 Tree]的更多相关文章

  1. luogu P4178 Tree

    题目链接 luogu P4178 Tree 题解 点分治 代码 // luogu-judger-enable-o2 #include<cstdio> #include<algorit ...

  2. POJ1471 Tree/洛谷P4178 Tree

    Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...

  3. [Luogu P4178]Tree 题解(点分治+平衡树)

    题目大意 给定一棵树,边带权,问有多少点对满足二者间距离$\leq K$,$n \leq 40000$. 题解 点分治专题首杀!$Jackpot!$ (本来看着题意比较简单想捡个软柿子捏,结果手断了… ...

  4. [LeetCode 题解]: Binary Tree Preorder Traversal

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述 Given a bi ...

  5. [LeetCode 题解]: Symmetric Tree

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述   Given a ...

  6. 洛谷P4178 Tree (点分治)

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式:   N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下 ...

  7. 竞赛题解 - Broken Tree(CF-758E)

    Broken Tree(CF-758E) - 竞赛题解 贪心复习~(好像暴露了什么算法--) 标签:贪心 / DFS / Codeforces 『题意』 给出一棵以1为根的树,每条边有两个值:p-强度 ...

  8. [题解] 树(tree)

    题目大意 ​ 给定一颗 \(N\) 个点的有根树,其中 \(1\) 是树根,除了 \(1\) 以外的其他点 \(u\) 有唯一的父亲 \(Father_u\).同时,给定 \(M\) 条路径,第 \( ...

  9. leetcode题解:Tree Level Order Traversal II (二叉树的层序遍历 2)

    题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...

随机推荐

  1. Ansible进阶之企业级应用

    1.环境 cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 ...

  2. asp.net上传文件夹权限配置以及权限配置的分析

    切记:一定要禁止给公共上传文件夹的权限设置为everyone,且为完全控制!除非你这个文件夹属于内部操作的,那这样做是允许,其余情况一律禁止! 基本的文件上传文件夹权限配置: 1.在需要配置上传的文件 ...

  3. .Net 多线程小结

    1.简述 一般一个程序一个进程,代码是存在进程中的,进程本身不执行代码,  执行代码的是线程. 一般一个进程里就一个线程.(一个商店就一个老板娘.) 进程就是在内存中开辟了一个空间.代码,图片..等就 ...

  4. Andriod Atom x86模拟器启动报错

    用Inter Atom模式的Android模拟器启动报一下错误: Starting emulator for AVD 'new' emulator: ERROR: x86 emulation curr ...

  5. hdu1708(C++)

    这个题目明确说了不涉及大数,假设第i个为b[i]: b[0]=s1; b[1]=s2; b[3]=s1+s2; b[4]=s1+2*s2; b[5]=2*s1+3*s2: b[6]=3*s1+5*s2 ...

  6. 线段树专题—ZOJ1610 Count the Colors

    题意:给一个n,代表n次操作,接下来每次操作表示把[l.r]区间的线段涂成k的颜色当中,l,r,k的范围都是0到8000 分析:事实上就是拿线段树维护一段区间的颜色,整体用到的是线段树的区间更新把,可 ...

  7. 香蕉派(or 皮?)上手初体验 -- 外观鉴赏,安装,配置&amp;总结

    一.前言及简单介绍 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9uZ2Vyem9uZQ==/font/5a6L5L2T/fontsize/400/f ...

  8. 内网ip打洞-----p2p实现原理

    网上找了非常多.代码大堆,原理讲清楚透彻的不多. 本人找几篇讲得好的来整理一下. 一片技术文章,最基本的讲清楚原理.假设再有完整的能执行的源码也可,关键是要把核心部分代码分析清楚. (1)问题的由来: ...

  9. Scala 中Array,List,Tuple的差别

    尽管学了一段时间的Scala了,可是总认为基础不是太扎实,还有非常多的基础知识比較模糊.于是近期又打算又一次学习基础. Scala中的三种集合类型包含:Array,List,Tuple.那么究竟这三种 ...

  10. springboot + mybatis配置多数据源示例

    转:http://www.jb51.net/article/107223.htm 在实际开发中,我们一个项目可能会用到多个数据库,通常一个数据库对应一个数据源. 代码结构: 简要原理: 1)Datab ...