HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 58566 Accepted Submission(s): 15511
you ever played quoit in a playground? Quoit is a game in which flat
rings are pitched at some toys, with all the toys encircled awarded.
In
the field of Cyberground, the position of each toy is fixed, and the
ring is carefully designed so it can only encircle one toy at a time. On
the other hand, to make the game look more attractive, the ring is
designed to have the largest radius. Given a configuration of the field,
you are supposed to find the radius of such a ring.
Assume that
all the toys are points on a plane. A point is encircled by the ring if
the distance between the point and the center of the ring is strictly
less than the radius of the ring. If two toys are placed at the same
point, the radius of the ring is considered to be 0.
input consists of several test cases. For each case, the first line
contains an integer N (2 <= N <= 100,000), the total number of
toys in the field. Then N lines follow, each contains a pair of (x, y)
which are the coordinates of a toy. The input is terminated by N = 0.
each test case, print in one line the radius of the ring required by
the Cyberground manager, accurate up to 2 decimal places.
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
0.00
0.75
平面最近点对,即平面中距离最近的两点
分治算法:
int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对
{
double ans; //answer
0) 调用前的预处理:对所有点排序,以x为第一关键词y为第二关键字 , 从小到大;
1) 将所有点按x坐标分成左右两部分;
/* 分析当前集合[left,right]中的最近点对,有两种可能:
1. 当前集合中的最近点对,点对的两点同属于集合[left,mid]或同属于集合[mid,right]
则ans = min(集合1中所有点的最近距离, 集合2中所有点的最近距离)
2. 当前集合最近点对中的两点分属于不同集合:[left,mid]和[mid,right]
则需要对两个集合进行合并,找出是否存在p∈[left,mid],q∈[mid,right],使得distance(p,q)小于当前ans(即步骤1中求得的ans);
*/
2) Mid = (left+right)/2;
ans = min( SOLVE(left,mid), SOLVE(mid,right) );
即:递归求解左右两部分中的最近距离,并取最小值;
//此步骤实现上文分析中的第一种情况
/*
再次进行分析
我们将集合[left,right]用x = mid这条直线分割成两部分
则如果画出直线l1:x=mid-ans 和 l2:x=mid+ans,显然如果有p∈[left,mid], q∈[mid,right]且distance(p,q) < ans则p,q一定在直线l1和直线l2之间,否则distance(p,q)必定大于ans。
于是扫描出在l1和l2之间的点
*/
3) 建立缓存数组temp[];
for i = left TO right
{
如果 abs(Point[i].x - Point[mid].x) <= ans
则向temp中加入点Point[i];
}
/*
对于temp中的点,枚举求所有点中距离最近两点的距离,然后与ans比较即可。
枚举的时候不必两两枚举。观察下图中的点p
不难发现,若有q∈[mid,mid+ans]使得distance(p,q) <
ans,则q点的位置一定在图中画出的一个2ans×ansd的矩形中。可以证明点集[mid,mid+ans]中的、矩形外的点与p点的距离一定大于ans。
于是我们可以对temp以y为唯一关键字从小到大排序,进行枚举, 更新ans,然后在枚举时判断:一旦枚举到的点与p点y值之差大于ans,停止枚举。最后就能得到该区间的最近点对。
*/
4) sort(temp);
for i = 0 TO k-1
{
for j = i+1 TO k-1
如果 temp[j].y - temp[i].y >= ans break;
ans = min( ans, distance(temp[i], temp[j]) );
}
5) return ans;
}
算法的时间复杂度
由鸽巢原理,代码中第四步的枚举实际上最多只会枚举6个点,效率极高(一种蒟蒻的证明请看下方的评论)
本算法时间复杂度为O(n log n)
#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int N = +;
const int mod = ;
const double eps=1e-;
const int INF=0x7fffffff; int n; struct point{
double x,y;
point(double x=,double y=):x(x),y(y) {}
bool operator < (const point& p) const {
if(x!=p.x) return x<p.x;
else return y<p.y;
}
}p[N],tmp[N]; bool cmpy(point a,point b){
return a.y<b.y;
} double dis(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double closest_pair(int left,int right){
double d=INF;
if(left==right)//如果此时区间查到了单点,直接返回最大值
return d;
if(left+==right) //如果左区间与右区间只差一,就直接返回他们的距离
return dis(p[left],p[right]);
int mid=(left+right)>>; //计算中点,位运算加速
double d1=closest_pair(left,mid); //分别计算出两个区间的值
double d2=closest_pair(mid,right);
d=min(d1,d2); //取两个区间中的最小值
int k=; //计算数量
for(int i=left;i<=right;i++){
if(fabs(p[mid].x-p[i].x)<=d){ //如果x轴的坐标相减满足<=d载入数组
tmp[k++]=p[i];
}
}
//按照y轴的值排序,默认按照升序
sort(tmp,tmp+k,cmpy); for(int i=;i<k;i++)
for(int j=i+;j<k&&tmp[j].y-tmp[i].y<d;j++){ //在已经筛出的数中计算最小值
double d3=dis(tmp[i],tmp[j]);
d=min(d,d3); //如果有最小值更新
}
return d; //直接返回最小值
} int main()
{
while(scanf("%d",&n),n){
for(int i=;i<n;i++){
double a,b;
scanf("%lf%lf",&a,&b);
p[i]=point(a,b);
}
sort(p,p+n); //化成有序数列
printf("%.2lf\n",closest_pair(,n-)/); //求的是半径,若求直径不必/2
}
return ;
}
平面点对
HDU 1007 Quoit Design【计算几何/分治/最近点对】的更多相关文章
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- hdu 1007 Quoit Design (经典分治 求最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
- HDU 1007 Quoit Design 平面内最近点对
http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...
- hdu 1007 Quoit Design(分治)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:给出n个点求最短的两点间距离除以2. 题解:简单的分治. 其实分治就和二分很像二分的写df ...
- hdu 1007 Quoit Design(平面最近点对)
题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...
- HDU 1007 Quoit Design | 平面分治
暂鸽 #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #d ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
随机推荐
- 2018 Multi-University Training Contest 1 H - RMQ Similar Sequence(HDU - 6305 笛卡尔树)
题意: 对于一个序列a,构造一个序列b,使得两个序列,对于任意的区间 [l, r] 的区间最靠近左端点的那个最大值的位置,并且序列 b 满足 0 < bi < 1. 给定一个序列 a ,求 ...
- [Hdu3507]Print Article(斜率优化)
Description 题意:给N个数,按顺序全部取走,每次取一段连续的区间,代价为\((S[i]-S[j])^2+M\) 其中M为一个给定的常数,\(S[i]\)为前缀和 \(N\leq 50000 ...
- [BZOJ1503]郁闷的出纳员(Splay)
Description OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常 ...
- 精简Docker镜像的五种通用方法
http://dockone.io/article/8163 精简Docker镜像的好处很多,不仅可以节省存储空间和带宽,还能减少安全隐患.优化镜像大小的手段多种多样,因服务所使用的基础开发语言不同而 ...
- 继承Thread类使用多线程
java实现多线程有两种方式,一种是继承Thread类,另外一种就是实现Runnable接口. 两种实现方法的优缺点: 使用Thread类实现多线程局限性就是不支持多继承,因为java是不支持类多继承 ...
- bash shell命令与监测的那点事(一)
bash shell命令与监测的那点事之ps 学习LInux,不得不谈谈bash shell命令,介绍Linux命令行与Shell脚本的书有很多很多,bash shell命令也有很多,此次我们只谈谈有 ...
- Wordpress 数据库查询错误 Call to a member function get_results() on null
在插件中的一个文件使用如下代码,无法查询 <body> <?php global $wpdb; $sql = ""; $sql = "SELECT * ...
- Oracle连接查询小结
表TESTA,TESTB,TESTC,各有A, B两列 A B 001 10A 002 20A A B 001 10B 003 30B A B 001 10C 004 40C 连接分为两种:内连接与外 ...
- BZOJ 1877:[SDOI2009]晨跑(最小费用最大流)
晨跑DescriptionElaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个 ...
- httpClient get方式抓取数据
/* * 爬取网页信息 */ private static String pickData(String url) { CloseableHttpClient ht ...