[HAOI2011]Problem b&&[POI2007]Zap
题目大意:
$q(q\leq50000)$组询问,对于给定的$a,b,c,d(a,b,c,d\leq50000)$,求$\displaystyle\sum_{i=a}^b\sum_{j=c}^d[\gcd(i,j)=k]$。
思路:
首先可以利用容斥原理,将$(a,b,c,d)$的询问拆成$(b,d)$、$(a-1,d)$、$(b,c-1)$和$(a-1,c-1)$四个询问,对于询问$(n,m)$,有:
$$
\begin{align*}
&\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\\
&=\sum_{k=1}^{\min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(i,j)=1]\\
&=\sum_{k=1}^{\min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d|\gcd(i,j)}\mu(d)\\
&=\sum_{k=1}^{\min(n,m)}\sum_{d=1}^{\min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)\sum_{1\leq i\leq\lfloor\frac{n}{k}\rfloor且d|i}\sum_{1\leq i\leq\lfloor\frac{m}{k}\rfloor且d|j}1\\
&=\sum_{k=1}^{\min(n,m)}\sum_{d=1}^{\min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}\mu(d)\lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor\lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor
\end{align*}
$$
$\mu$的前缀和可以预处理。因此到最后一步时,复杂度已经是$O(n)$的了,然而$q\leq50000$,还是会TLE。考虑某些时候对于某一范围内的$k$,$\lfloor\frac{\lfloor\frac{n}{k}\rfloor}{d}\rfloor$和$\lfloor\frac{\lfloor\frac{m}{k}\rfloor}{d}\rfloor$分别各自相等,因此我们可以将相等的情况一起考虑,这样总共有$O(\sqrt n)$种情况,时间复杂度$O(q\sqrt n)$。
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
bool vis[N];
int mu[N],sum[N],p[M];
inline void sieve() {
mu[]=;
for(register int i=;i<N;i++) {
if(!vis[i]) {
p[++p[]]=i;
mu[i]=-;
}
for(register int j=;j<=p[]&&i*p[j]<N;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) {
mu[i*p[j]]=;
break;
}
mu[i*p[j]]=-mu[i];
}
}
for(register int i=;i<N;i++) {
sum[i]=sum[i-]+mu[i];
}
}
inline int64 calc(int n,int m,const int &k) {
int64 ret=;
n/=k,m/=k;
const int lim=std::min(n,m);
for(register int i=,j;i<=lim;i=j+) {
j=std::min(n/(n/i),m/(m/i));
ret+=(int64)(sum[j]-sum[i-])*(n/i)*(m/i);
}
return ret;
}
int main() {
sieve();
for(register int i=getint();i;i--) {
const int a=getint(),b=getint(),c=getint(),d=getint(),k=getint();
printf("%lld\n",calc(b,d,k)-calc(a-,d,k)-calc(b,c-,k)+calc(a-,c-,k));
}
return ;
}
[HAOI2011]Problem b&&[POI2007]Zap的更多相关文章
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
随机推荐
- Sicily 8843 Ranking and Friendship
http://soj.me/8843 题意:几个人想做好朋友,朋友之间相差位置小于等于k,且长度相同分析:排序,将长度相同的放在一起.若长度相同,第i个人能放进去的条件是位置相差下雨等于k. ...
- git上传自己的代码
感谢这个哥们的博客,不过里面有些错误. http://www.cnblogs.com/ruofengzhishang/p/3842587.html 下面是我自己的实践成功的: 这篇文章写得是windo ...
- 步骤详解安装Apache web服务器
1.在上右键è安装 安装后apache web服务器自动启动. 在右下角出现. Apache安装之后有一个默认的网站目录 在浏览器上通过网站就可以访问到该目录下的文件. 2.测试 在浏览器输上请求lo ...
- 46、android studio第一次使用时卡在gradle下载怎么解决?
如果没法FQ或者FQ后网速慢,哥教你一个快速解决方案. 在根目录下的.gradle目录下,找到wrapper/dists目录,如果当前正在下载gradle.x.xx-all.zip,那么会发现grad ...
- leetcode 【 Find Minimum in Rotated Sorted Array 】python 实现
题目: Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 ...
- C++文件读写之对象的读写
这里以一个简单的学生信息管理系统为例. 首先是对象的建立,包括姓名,学号,成绩,学分,等 如下: 这里面包括两个子对象, class Student { public: Student() :scor ...
- 最少的硬币数量组合出1到m之间的任意面值(贪心算法)
题目描述: 你有n种不同面值的硬币,每种面值的硬币都有无限多个,为了方便购物,你希望带尽量少的硬币,并且要能组合出 1 到 m 之间(包含1和m)的所有面值. 输入描述: 第一行包含两个整数:m ,n ...
- 理解机器为什么可以学习(五)---Noise and Error
之前我们讨论了VC Dimension,最终得到结论,如果我们的hypetheset的VC Dimension是有限的,并且有足够的资料,演算法能够找到一个hypethesis,它的Ein很低的话,那 ...
- URIs, URLs, and URN
首先,URI,是uniform resource identifier,统一资源标识符,用来唯一的标识一个资源.而URL是uniform resource locator,统一资源定位器,它是一种具体 ...
- UVALive 5099 Nubulsa Expo 全局最小割问题
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...