【BZOJ3529】【SDOI2014】数表 (莫比乌斯反演+树状数组)
Description
有一张$n\times m$的数表,其第$i$行第$j$列 $(1≤i≤n,1≤j≤m)$ 的数值为能同时整除$i$和$j$的所有自然数之和。
现在给定$a$,计算数表中不大于$a$的数之和。
Input
输入包含多组数据。
输入的第一行一个整数$Q$表示测试点内的数据组数,接下来Q行,每行三个整数$n,m,a(a≤109)$描述一组数据。
Output
题解:
我数学太水了!!又是一道推公式的题:
\begin{aligned}
ans&=\sum^n_{i=1}\sum^m_{j=1}\sum_{d\mid gdc(i,j)}d\\
&=\sum_d^n\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}f(d)[gcd(i,j)=1] &(f(d)=\sum_{k\mid d}k)\\
&=\sum_d^n f(d)\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}\sum_{k\mid gcd(i,j)}\mu(k)\\
&=\sum_k^n\sum_d^n f(d)\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor\\
&设 T=kd \\
ans&=\sum_T^n\sum_{d\mid T}f(d)\mu(\frac{T}{d})\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\\
\end{aligned}
前面同样是数论分块,后面依旧是线性筛。
考虑f怎么求
有个约数和定理
若$n=\sum_{i=1}^k p_i^{a_i}$,$p_i$为$n$的质因数,那么$n$的约数和 $f(n)$满足$f(n)=\prod_{i=1}^k\sum_{j=0}^{a_i}p_i^j$
$f$的话首先是个积性函数,我们在筛$\mu$的时候想顺便把这个也筛出来
考虑$f(d)$的值,如果说d是质数的话答案显然是$d+1$,下面讨论$d$为合数的情况
设$d=i*p$,其中$p$为质数
$p\nmid i$,那么$p$和$i$互质,所以$f(d)=f(p)*f(i)$
$p∣i$,设$i=t*p^x$ ,那么根据约数和定理,我们可以得
$$f(i*p) = f(t)f(p^{x+1}) = f(t)\sum\limits_{i=0}^{x+1}p^i$$
然后我们把p0(也就是1)拿出来,得到
$$f(i * p) = f(t) + f(t)*\sum\limits_{i=1}^{x+1}p^i = f(t) + f(t)*f(p^x)*p$$
然后$i = t * p^x$,所以$f(t) * f(p^x) = f(i)$
所以最后就是$f(d) = f(t) + f(i) * p$
然后就可以筛出$f(d)$啦
剩下的东西
现在加上a的限制,其实就是离线处理
我们先将所有的询问按照a的大小排序,然后从小到大处理
因为分块的时候我们要用到的是g(x)的前缀和,所以用一个树状数组来处理
将f(x)排个序,枚举的时候只枚举到f(x)<a,然后枚举另一个约数求出g,丢到树状数组里面去
求答案的时候直接查询就好了
CODE:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; #define lowbit(x) (x&-x)
int T,cnt=,maxn,ans[],tmp[];
int f[],pri[],c[],mu[];
bool vis[];
struct Que{
int n,m,a,id;
bool operator<(const Que &b)const{
return a<b.a;
}
}q[]; bool comp(int a,int b){return f[a]<f[b];} void init(){
mu[]=f[]=;
for(int i=;i<=maxn;i++){
if(!vis[i]){
f[i]=i+,mu[i]=-;
pri[++cnt]=i;
}
for(int j=;j<=cnt&&i*pri[j]<=maxn;j++){
vis[i*pri[j]]=true;
if(i%pri[j]==){
mu[i*pri[j]]=;
int t=i;
while(t%pri[j]==)t/=pri[j];
f[i*pri[j]]=f[t]+pri[j]*f[i];
break;
}else{
f[i*pri[j]]=f[i]*f[pri[j]];
mu[i*pri[j]]=-mu[i];
}
}
}
} void add(int x,int y){
while(x<=maxn){
c[x]+=y;
x+=lowbit(x);
}
} int sum(int x){
int ans=;
while(x>=){
ans+=c[x];
x-=lowbit(x);
}
return ans;
} int main(){
scanf("%d",&T);
for(int i=;i<=T;i++){
scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a);
q[i].id=i;
if(q[i].n>q[i].m)swap(q[i].n,q[i].m);
maxn=max(maxn,q[i].n);
}
init();
sort(q+,q+T+);
for(int i=;i<=maxn;i++)tmp[i]=i;
sort(tmp+,tmp+maxn+,comp);
for(int i=,now=;i<=T;i++){
int n=q[i].n,m=q[i].m,a=q[i].a;
while(now<=maxn&&f[tmp[now]]<=a){
for(int k=;k*tmp[now]<=maxn;k++)
add(k*tmp[now],f[tmp[now]]*mu[k]);
now++;
}
for(int j=,pos;j<=n;j=pos+){
pos=min(n/(n/j),m/(m/j));
ans[q[i].id]+=(n/j)*(m/j)*(sum(pos)-sum(j-));
}
}
for(int i=;i<=T;i++)
printf("%d\n",ans[i]&0x7fffffff);
}
【BZOJ3529】【SDOI2014】数表 (莫比乌斯反演+树状数组)的更多相关文章
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- luogu3312 [SDOI2014]数表 (莫比乌斯反演+树状数组)
link \(\sum_{i=1}^n\sum_{j=1}^m[s(\gcd(i,j))\le a]s(\gcd(i,j))\) \(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_ ...
- 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- bzoj 3529 数表 莫比乌斯反演+树状数组
题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
随机推荐
- python之函数的传参形参的第三种动态参数*args和**kwargs
1. 位置/关键字传参的缺点 当给函数传入的参数数目不定时,之前的传参方式解决不了问题. def eat(food1,food2,food3): print(f'我请你吃:{food1},{food2 ...
- ps基础入门快捷方法总结
1. 快速打开文件 双击Photoshop的背景空白处(默认为灰色显示区域)即可打开选择文件的浏览窗口. 2. 随意更换画布颜色 选择油漆桶工具并按住Shift点击画布边缘,即可设置画布底色为当前选择 ...
- NIOP 膜你题
NOIp膜你题 Day1 duliu 出题人:ZAY 1.大美江湖(mzq.cpp/c) [题目背景] 细雪飘落长街,枫叶红透又一年不只为故友流连,其实我也恋长安听门外足音慢,依稀见旧时容颜 ...
- 前端开发面试题之JavaScript(转自公众号)(1)
js基本数据类型:Undefine Number Null Boolean String; js内置对象:数据封装类对象:object.Array.Boolean.String: 其他:Functio ...
- [JZOJ] 5837.Omeed
先摆出来这个式子 \[ score=A\sum S_i+B\sum S_i\times f(i) \] 先研究\(f\)函数(也就是Combo函数) 显然的有 \[ f(i)=P_i(f(i-1)+1 ...
- Golang TCP转发到指定地址
Golang TCP转发到指定地址 第二个版本,设置指定ip地址 代码 // tcpForward package main import ( "fmt" "net&qu ...
- Win2008 Server配置PHP环境
Win2008 Server配置PHP环境 阅读目录 创建一个网站 配置PHP环境 配置iis的“处理应用程序映射” 在配置PHP环境之前要先配置好IIS. 传送门-> Win2008 Se ...
- dict 方法总结整理
#!/usr/bin/env python __author__ = "lrtao2010" #Python 3.7.0 字典常用方法 #字典的key是唯一的,且不能被修改,val ...
- stm32F4中断分析-HAL库
详细可以参考: STM32使用HAL库操作外部中断——实战操作 https://www.cnblogs.com/wt88/p/9624103.html /** ******************** ...
- 欧拉函数:HDU1787-GCD Again(欧拉函数的模板)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...