- 基本按照官网上的readme

1.电脑上已经有可运行caffe所需的环境

2.下载faster-rcnn python版本源码

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

3. 进入/py-faster-rcnn/lib 进行编译,build the Cython modules

    cd py-faster-rcnn/lib
make
  • 如果重新升级或者降级numpy依赖包,需要重新去掉之前生成的文件,重新make; 否则会报这里面的错

问题:

python setup.py build_ext --inplace
running build_ext
cythoning utils/bbox.pyx to utils/bbox.c Error compiling Cython file:
------------------------------------------------------------
...
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Sergey Karayev
# -------------------------------------------------------- cimport cython
^
------------------------------------------------------------ utils/bbox.pyx:8:8: Compiler crash in AnalyseDeclarationsTransform File 'ModuleNode.py', line 122, in analyse_declarations: ModuleNode(bbox.pyx:1:0,
full_module_name = 'utils.cython_bbox')
File 'Nodes.py', line 408, in analyse_declarations: StatListNode(bbox.pyx:8:0)
File 'Nodes.py', line 408, in analyse_declarations: StatListNode(bbox.pyx:8:8)
File 'Nodes.py', line 7396, in analyse_declarations: CImportStatNode(bbox.pyx:8:8,
module_name = u'cython') File "/home/dsp/anaconda2/lib/python2.7/site-packages/Cython/Utils.py", line 148, in search_include_directories
path = os.path.join(dir, dotted_filename)
File "/home/dsp/anaconda2/lib/python2.7/posixpath.py", line 73, in join
path += '/' + b
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position 10: ordinal not in range(128)
building 'utils.cython_bbox' extension
gcc -pthread -B /home/dsp/anaconda2/compiler_compat -Wl,--sysroot=/ -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/dsp/anaconda2/lib/python2.7/site-packages/numpy/core/include -I/home/dsp/anaconda2/include/python2.7 -c utils/bbox.c -o build/temp.linux-x86_64-2.7/utils/bbox.o -Wno-cpp -Wno-unused-function
utils/bbox.c:1:2: error: #error Do not use this file, it is the result of a failed Cython compilation.
#error Do not use this file, it is the result of a failed Cython compilation.
^
error: command 'gcc' failed with exit status 1
Makefile:2: recipe for target 'all' failed
make: *** [all] Error 1
  • 先各种百度,安装cython等;结果发现时路径的坑
  • 神坑:路径;py-faster-rcnn存放位置路径中不能有中文,否则报错UnicodeDecodeError: 'ascii' codec can't decode byte 0xe6 in position
  • 最后放到  /home/uername/ 下直接makec成功

4.编译/py-faster-rcnn/caffe-fast-rcnn

cd py-faster-rcnn/caffe-fast-rcnn
make -j32 && make pycaffe
  • Makefile.config文件直接用的本机配置caffe的文件
  • 问题:
dsp@dsp-PowerEdge-R730:/home/user/ran/Desktop/protobuf-2.6.$ protoc
[libprotobuf FATAL google/protobuf/stubs/common.cc:] This program requires version 3.4. of the Protocol Buffer runtime library, but the installed version is 2.6.. Please update your library. If you compiled the program yourself, make sure that your headers are from the same version of Protocol Buffers as your link-time library. (Version verification failed in "google/protobuf/any.pb.cc".)
terminate called after throwing an instance of 'google::protobuf::FatalException'
what(): This program requires version 3.4. of the Protocol Buffer runtime library, but the installed version is 2.6.. Please update your library. If you compiled the program yourself, make sure that your headers are from the same version of Protocol Buffers as your link-time library. (Version verification failed in "google/protobuf/any.pb.cc".)
Aborted (core dumped)

这个问题是服务器上的错误:http://blog.csdn.net/m0_37477175/article/details/78233983

https://www.cnblogs.com/javaee6/p/4849051.html

https://github.com/BVLC/caffe/issues/5711

前面两种方法都是了没有解决,后面github上的issue也没有给出解决方法,看以后能不能解决!!!

In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from src/caffe/blob.cpp:4:
./include/caffe/util/cudnn.hpp:8:34: fatal error: caffe/proto/caffe.pb.h: 没有那个文件或目录

- 按照:解决方法: 用protoc从caffe/src/caffe/proto/caffe.proto生成caffe.pb.h和caffe.pb.cc ,http://blog.csdn.net/xmzwlw/article/details/48270225没有作用;后面还有一串错误

In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
./include/caffe/util/cudnn.hpp: In function ‘const char* cudnnGetErrorString(cudnnStatus_t)’:
./include/caffe/util/cudnn.hpp:21:10: warning: enumeration value ‘CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING’ not handled in switch [-Wswitch]
switch (status) {
^
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::setConvolutionDesc(cudnnConvolutionStruct**, cudnnTensorDescriptor_t, cudnnFilterDescriptor_t, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:108:70: error: too few arguments to function ‘cudnnStatus_t cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t, int, int, int, int, int, int, cudnnConvolutionMode_t, cudnnDataType_t)’
pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
/usr/local/cuda/include/cudnn.h:500:27: note: declared here
cudnnStatus_t CUDNNWINAPI cudnnSetConvolution2dDescriptor( cudnnConvolutionDescriptor_t convDesc,
^
In file included from ./include/caffe/util/device_alternate.hpp:40:0,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:
./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’
pad_h, pad_w, stride_h, stride_w));
^
./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’
cudnnStatus_t status = condition; \
^
In file included from ./include/caffe/util/cudnn.hpp:5:0,
from ./include/caffe/util/device_alternate.hpp:40,
from ./include/caffe/common.hpp:19,
from ./include/caffe/blob.hpp:8,
from ./include/caffe/layers/loss_layer.hpp:6,
from src/caffe/layers/loss_layer.cpp:3:
  • 后面发现时cndnn版本不兼容:Faster R-CNN 和最新的版本cuDNN V5.0不兼容问题
  • 解决方法:
    
    cd py-faster-rcnn/caffe-fast-rcnn
    Git remote add caffe https://github.com/BVLC/caffe.git
    git fetch caffe
    git merge caffe/master 在合并之后注释掉include/caffe/layers/python_layer.hppa文件里的self_.attr(“phase”) = static_cast(this->phase_)
  • 重新从caffe中fetch and merge
  • 遇到merge冲突,直接编辑
  // Caffe utility functions
bp::def("init_log", &InitLog);
bp::def("init_log", &InitLogLevel);
bp::def("init_log", &InitLogLevelPipe);
bp::def("log", &Log);
bp::def("has_nccl", &HasNCCL);
bp::def("set_mode_cpu", &set_mode_cpu);
bp::def("set_mode_gpu", &set_mode_gpu);
bp::def("set_random_seed", &set_random_seed);
bp::def("set_device", &Caffe::SetDevice);
<<<<<<< HEAD
bp::def("set_random_seed", &Caffe::set_random_seed);
=======
bp::def("solver_count", &Caffe::solver_count);
bp::def("set_solver_count", &Caffe::set_solver_count);
bp::def("solver_rank", &Caffe::solver_rank);
bp::def("set_solver_rank", &Caffe::set_solver_rank);
bp::def("set_multiprocess", &Caffe::set_multiprocess);
>>>>>>> caffe/master

- 最后编译成功;faster-rcnn 安装里面也提到了处理版本不兼容,进行文件替换的方法

AR -o .build_release/lib/libcaffe.a
LD -o .build_release/lib/libcaffe.so.1.0.0
CXX/LD -o .build_release/tools/convert_imageset.bin
CXX/LD -o .build_release/tools/train_net.bin
CXX/LD -o .build_release/tools/finetune_net.bin
CXX/LD -o .build_release/tools/compute_image_mean.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_text.bin
CXX/LD -o .build_release/tools/test_net.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_binary.bin
CXX/LD -o .build_release/tools/upgrade_solver_proto_text.bin
CXX/LD -o .build_release/tools/net_speed_benchmark.bin
CXX/LD -o .build_release/tools/device_query.bin
CXX/LD -o .build_release/tools/extract_features.bin
CXX/LD -o .build_release/examples/cifar10/convert_cifar_data.bin
CXX/LD -o .build_release/examples/mnist/convert_mnist_data.bin
CXX/LD -o .build_release/examples/cpp_classification/classification.bin
CXX/LD -o .build_release/tools/caffe.bin
CXX/LD -o .build_release/examples/siamese/convert_mnist_siamese_data.bin
CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp
touch python/caffe/proto/__init__.py
PROTOC (python) src/caffe/proto/caffe.proto

5、下载Faster R-CNN的预训练模型

cd py-faster-rcnn
./data/scripts/fetch_faster_rcnn_models.sh model:https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0

6、运行demo.py

cd py-faster-rcnn
./tools/demo.py

7.Usage:训练

To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, use experiments/scripts/faster_rcnn_alt_opt.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
# --set EXP_DIR seed_rng1701 RNG_SEED 1701

AttributeError: 'module' object has no attribute 'text_format'

在文件./lib/fast_rcnn/train.py增加一行import google.protobuf.text_format 即可解决问题

8.后续问题

I1119 21:29:42.451519 21365 net.cpp:744] Ignoring source layer pool5_spm6
I1119 21:29:42.451537 21365 net.cpp:744] Ignoring source layer pool5_spm6_flatten
I1119 21:29:42.481129 21365 net.cpp:744] Ignoring source layer fc8
I1119 21:29:42.481151 21365 net.cpp:744] Ignoring source layer prob
Solving...
Process Process-3:
Traceback (most recent call last):
File "/home/dsp/anaconda2/lib/python2.7/multiprocessing/process.py", line 267, in _bootstrap
self.run()
File "/home/dsp/anaconda2/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "./tools/train_faster_rcnn_alt_opt.py", line 195, in train_fast_rcnn
max_iters=max_iters)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/train.py", line 162, in train_net
model_paths = sw.train_model(max_iters)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/train.py", line 103, in train_model
self.solver.step(1)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/layer.py", line 144, in forward
blobs = self._get_next_minibatch()
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/layer.py", line 63, in _get_next_minibatch
return get_minibatch(minibatch_db, self._num_classes)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/minibatch.py", line 55, in get_minibatch
num_classes)
File "/home/dsp/py-faster-rcnn/tools/../lib/roi_data_layer/minibatch.py", line 100, in _sample_rois
fg_inds, size=fg_rois_per_this_image, replace=False)
File "mtrand.pyx", line 1187, in mtrand.RandomState.choice
TypeError: 'numpy.float64' object cannot be interpreted as an index TypeError: 'numpy.float64' object cannot be interpreted as an index
还是numpy版本的问题,直接换一个版本好了
sudo pip install -U numpy==1.11.0 --这个错 “ImportError: numpy.core.multiarray failed to import”好像就是lib库里面没有重新make,去掉之前
+ ./tools/train_faster_rcnn_alt_opt.py --gpu 0 --net_name ZF --weights data/imagenet_models/ZF.v2.caffemodel --imdb voc_2007_trainval --cfg experiments/cfgs/faster_rcnn_alt_opt.yml
Traceback (most recent call last):
File "./tools/train_faster_rcnn_alt_opt.py", line 19, in <module>
from datasets.factory import get_imdb
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/factory.py", line 13, in <module>
from datasets.coco import coco
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/coco.py", line 20, in <module>
from pycocotools.coco import COCO
File "/home/dsp/py-faster-rcnn/tools/../lib/pycocotools/coco.py", line 58, in <module>
import mask
File "/home/dsp/py-faster-rcnn/tools/../lib/pycocotools/mask.py", line 3, in <module>
import pycocotools._mask as _mask
File "pycocotools/_mask.pyx", line 20, in init pycocotools._mask
File "__init__.pxd", line 989, in numpy.import_array
ImportError: numpy.core.multiarray failed to import
Reading annotation for 4901/4952
Saving cached annotations to /home/dsp/py-faster-rcnn/data/VOCdevkit2007/annotations_cache/annots.pkl
AP for aeroplane = 0.0339
AP for bicycle = 0.1139
AP for bird = 0.0069
AP for boat = 0.0646
Traceback (most recent call last):
File "./tools/test_net.py", line 90, in <module>
test_net(net, imdb, max_per_image=args.max_per_image, vis=args.vis)
File "/home/dsp/py-faster-rcnn/tools/../lib/fast_rcnn/test.py", line 295, in test_net
imdb.evaluate_detections(all_boxes, output_dir)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/pascal_voc.py", line 322, in evaluate_detections
self._do_python_eval(output_dir)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/pascal_voc.py", line 285, in _do_python_eval
use_07_metric=use_07_metric)
File "/home/dsp/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 148, in voc_eval
BB = BB[sorted_ind, :]
IndexError: too many indices for array

http://blog.csdn.net/weinaonao5418/article/details/54234684

    File "/home/dl-box/wei/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 149, in voc_eval
        BB = BB[sorted_ind, :]
    IndexError: too many indices for array
    这个错是说没有学习到东西,我用了[4000,2000,4000,2000]试了一下也不行。不过能看到这个错误,如果你的数据集做的没有问题的话,用[80000,40000,80000,40000](亲测大概16小时,1341张图)运行你自己的数据集就没问题了。为了省时间我用的是[40000,20000,40000,2000](大概8小时,50张图)。这个时间好像与图片大小和图片数量关系不大。感觉只与迭代次数有关。
  • Reference

CNN目标检测(一):Faster RCNN详解

faster-rcnn 安装

Faster R-CNN 的Caffe实现

http://blog.csdn.net/mydear_11000/article/details/70241139

caffe版faster-RCNN环境搭建的更多相关文章

  1. Go版GTK:环境搭建(windows)

    Go版GTK:环境搭建(windows) https://blog.csdn.net/tennysonsky/article/details/79221507 所属专栏: Go语言开发实战     1 ...

  2. 记pytorch版faster rcnn配置运行中的一些坑

    记pytorch版faster rcnn配置运行中的一些坑 项目地址 https://github.com/jwyang/faster-rcnn.pytorch 一般安装配置参考README.md文件 ...

  3. Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇   推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu  原文见:https://hom ...

  4. Windows下如何采用微软的Caffe配置Faster R-CNN

    前言 比较简单的一篇博客.https://github.com/microsoft/caffe 微软的Caffe以在Windows下编译简单而受到了很多人的喜爱(包括我),只用改改prop配置然后无脑 ...

  5. Cocos2d-x 3.0正式版及android环境搭建

    开发环境是:mac + xcode + eclipse ,在win以下的环境和这个都是一样的,唯一不一样的就是环境变量的配置. 以下主要介绍cocos2d-x环境的设置以及android的环境搭建 1 ...

  6. python 版Faster Rcnn

    直接按照官网https://github.com/rbgirshick/py-faster-rcnn上的教程对faster Rcnn进行编译的时候,会发有一些层由于cudnn版本的更新,会报错如下: ...

  7. caffe之mac下环境搭建

    参考 http://www.linuxidc.com/Linux/2016-09/135026.html 1. 安装brew,也叫homebrew,mac下类似于ubuntu的apt-get功能 cu ...

  8. Tensorflow版Faster RCNN源码解析(TFFRCNN) (1) VGGnet_test.py

    本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第1篇   VGGnet_test.py ----作者:Jiang Wu(吴疆),未经允许,禁止转载--- -- ...

  9. faster rcnn环境编译

    步骤和fast rcnn的编译一样,在编译中遇到了一个问题: 刚开始是以为python-numpy没有安装到位,后来发现是Makefile.config的配置出现了问题.原来的配置是: PYTHON_ ...

  10. caffe 用faster rcnn 训练自己的数据 遇到的问题

    1 . 怎么处理那些pyx和.c .h文件 在lib下有一些文件为.pyx文件,遇到不能import可以cython 那个文件,然后把lib文件夹重新make一下. 遇到.c 和 .h一样的操作. 2 ...

随机推荐

  1. JAVA 消耗 CPU过高排查方法

    #找出cpu占用最高的进程top -H#再次确定进程ps aux|grep 17408 #查看进程的线程(tid) ps -mp 17408 -o THREAD,tid,time#将线程转换为十六进制 ...

  2. python_字符串,元组,格式化输出

    一.字符串 1.字符串是有成对的单引号或者双引号括起来的.例如:name="张三",sex="女" 2.字符串的索引是从0开始的 3.字符串的切片 a.单个字符 ...

  3. C语言总结(1)

    1scanf( )和printf( )属于系统的函数,分别表示输入和输出. 2.所有C语言的程序只有一个main( )函数,从这里开始运行. 3.程序先执行main( ),调用scanf( ),最后输 ...

  4. 理解 PHP output buffer

    在需要使用输出缓存区的时候,一般会在代码中加上ob_start()这个函数. 这是因为php.ini中output_buffering设置为off时,则缓存区处于关闭状态,需要用ob_start()打 ...

  5. java反射的基本使用

    反射机制是java中非常重要的功能,熟练使用反射功能对实际的开发有很大的帮助. 一,通过反射获取对象实例 使用的对象User package whroid.java.reflect; public c ...

  6. kb-01-e<取余操作,宽搜,巧妙>;

    题目描述: n属于1到200,找到对应的一个数只含有0和1,并且是n的倍数: 分析: 本题有几个数会是大数:所以要考虑大数: 用到余数的性质:例如n=6,1%6=1: 1*10%6=4:       ...

  7. Django notes III: Dynamic filtering

    EXTRACTED from the Django document It's a common need to filter down the objects given in a list pag ...

  8. java面试题之什么是线程ThreadLocal?作用是什么?

    定义:线程局部变量是局限于线程内的变量,属于线程自身所有,不在多个线程间共享.java提供ThreadLocal类来支持线程局部变量,是一个实现线程安全的方式. 任何线程局部变量一旦在工作完成后没有释 ...

  9. 仔细瞄一下HashMap是怎么干活的

    以下分析基于jdk11.0.2 1. 创建HashMap时发生了什么? HashMap(),HashMap(int initialCapacity),HashMap(int initialCapaci ...

  10. 【python接口自动化】logger

    #! /usr/bin/env python # coding=GBK import logging, os class Logger: def __init__(self, path, clevel ...