Sightseeing Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10306   Accepted: 3519

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

题目链接:POJ 3621

最优比例环的题,也是用01分数规划写,目的是找到一个环,使得该环上${\Sigma w_v \over \Sigma w_e}$最大,那么我们设比例为r,当${\Sigma w_v \over \Sigma w_e}>r$时说明可以找到更大的r'作为答案,由这个式子有可以得到:$\Sigma w_v - r * \Sigma w_e>0$,即存在左边的式子结果>0即可,若要找存在一个数大于0,那么肯定找这个数可能的最大值,那显然把边权重新赋值为$w_{vi}-r*w_{e}$,然后这式子跟SPFA找正环有什么关系?可以发现$\Sigma w_v - r * \Sigma w_e$这个式子代表了这个环上用$w_{vi}-r*w_{ei}$作为新边权的所有边权之和,如果这个和大于0,那显然这个环上存在正环,即有不存在最长路,那每一次SPFA找最长路看看是否存在即可,当然也把式子加个负号,然后用负环检测也可以做

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int M = 5010;
const double eps = 1e-6;
struct edge
{
int to, nxt;
double w;
edge() {}
edge(int _to, int _nxt, double _w): to(_to), nxt(_nxt), w(_w) {}
};
edge E[M];
int head[N], tot;
int vis[N], cnt[N];
double d[N];
int arr[N]; void init()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, double w)
{
E[tot] = edge(t, head[s], w);
head[s] = tot++;
}
int spfa(int n, double g)
{
queue<int>Q;
for (int i = 1; i <= n; ++i)
{
d[i] = 0;
vis[i] = 1;
cnt[i] = 1;
Q.push(i);
}
while (!Q.empty())//找正环
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
double w = arr[u] - g * E[i].w;
if (d[v] < d[u] + w)
{
d[v] = d[u] + w;
if (!vis[v])
{
vis[v] = 1;
Q.push(v);
if (++cnt[v] > n)
return 1;
}
}
}
}
return 0;
}
int main(void)
{
int n, m, a, b, i;
double w;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
for (i = 1; i <= m; ++i)
{
scanf("%d%d%lf", &a, &b, &w);
add(a, b, w);
}
double L = 0, R = 1000;
double ans = 0;
while (fabs(R - L) >= eps)
{
double mid = (L + R) / 2.0;
if (spfa(n, mid))
{
L = mid;
ans = mid;
}
else
R = mid;
}
printf("%.2f\n", ans);
}
return 0;
}

POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)的更多相关文章

  1. POJ 3621 Sightseeing Cows [最优比率环]

    感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...

  2. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. POJ3621 Sightseeing Cows 最优比率环 二分法

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  4. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  5. [POJ 3621] Sightseeing Cows

    [题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...

  6. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

  7. POJ3621 Sightseeing Cows(最优比率环)

    题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...

  8. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  9. POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)

    题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...

随机推荐

  1. MicroService 微服务提供者搭建

    本机IP为  192.168.1.102 1.  新建Maven项目   microservice 2.   pom.xml <project xmlns="http://maven. ...

  2. Oracle 配置文件目录

    Oracle 配置文件目录 ① 在oracle安装目录下,找D:\oracle\product\10.2.0\client_1\NETWORK\ADMIN中的tnsnames.ora文件,找到之后,配 ...

  3. Oracle 事务 锁

    一. 事务 是一系列的数据库操作,是数据库应用的基本逻辑单位以及并发控制的基本单位.所谓的事务,它是一个操作序列,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位. 要将有组语句作为事务考 ...

  4. nginx限制ip访问某些特定url

    这两天百度云给我发了一些安全报警邮件,其中一条是有些陌生ip频繁尝试登录我的后台账户,也就是www.runstone.top/admin.给出的建议是限制这些ip访问/admin/这个url,于是经过 ...

  5. python 使用requests 请求 https 接口 ,取消警告waring

    response = requests.request("POST", url, timeout=20, data=payload, headers=headers, proxie ...

  6. dynamic routing between captual

    对于人脑 决策树形式 对于CNN 层级与层级间的传递 人在识别物体的时候会进行坐标框架的设置 CNN无法识别,只能通过大量训练 胶囊 :一个神经元集合,有一个活动的向量,来表示物体的各类信息,向量的长 ...

  7. VS2010官方下载地址

    http://download.microsoft.com/download/2/4/7/24733615-AA11-42E9-8883-E28CDCA88ED5/X16-42552VS2010Ult ...

  8. Android开发——JVM、Dalvik以及ART的区别

    )预编译也可以明显改善电池续航,因为应用程序每次运行时不用重复编译了,从而减少了 CPU 的使用频率,降低了能耗.

  9. Android开发——常见的内存泄漏以及解决方案(一)

    0. 前言   转载请注明出处:http://blog.csdn.net/seu_calvin/article/details/52333954 Android的内存泄漏是Android开发领域永恒的 ...

  10. 3 View视图 URLconf

    1.视图 视图接受Web请求并且返回Web响应 视图就是一个python函数,被定义在views.py中 响应可以是一张网页的HTML内容,一个重定向,一个404错误等等 响应处理过程如下图: 2 准 ...