Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
/*
考虑每个点对于答案的贡献,设点为(x,y),容易得出它对答案的贡献为gcd(x,y)*2-1。
重点在于求出ΣΣgcd(i,j)=Σphi(i)*(n/i)*(m/i),然后用除法分块。
*/
#include<cstdio>
#include<iostream>
#define N 100010
#define lon long long
using namespace std;
int mark[N],prime[N],phi[N],n,m,num;
lon sum[N],ans;
void get_prime(){
phi[]=;
for(int i=;i<N;i++){
if(!mark[i]) prime[++num]=i,phi[i]=i-;
for(int j=;j<=num&&i*prime[j]<N;j++){
mark[i*prime[j]]=;
phi[i*prime[j]]=phi[i]*(prime[j]-);
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=;i<N;i++) sum[i]=sum[i-]+(lon)phi[i];
}
int main(){
get_prime();
scanf("%d%d",&n,&m);
int last;
for(int i=;i<=min(n,m);i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(sum[last]-sum[i-])*(lon)(n/i)*(lon)(m/i);
}
cout<<ans*-(lon)n*m;
return ;
}

能量采集(bzoj 2005)的更多相关文章

  1. 2005: [Noi2010]能量采集 - BZOJ

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  2. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  3. BZOJ 2005 能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  5. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  6. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  7. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  8. 【BZOJ】【2005】【NOI2010】能量采集

    欧拉函数 玛雅,我应该先看看JZP的论文的……贾志鹏<线性筛法与积性函数>例题一 这题的做法……仔细想下可以得到:$ans=2*\sum_{a=1}^n\sum_{b=1}^m gcd(a ...

  9. 【BZOJ 2005】[Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  10. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

随机推荐

  1. C++ 学习笔记 (八)重载 重写 重定义以及名字覆盖

    学习C++必定会遇到重载.重写.重定义.概念的东西多也是学习C++蛋疼之处,但是还是得弄懂,学懂了也就不觉得多了. 概念,特点: 重载: 直白点说就是函数名字相同,传参的个数,类型不一样.判断标准在于 ...

  2. 洛谷P3371单源最短路径Dijkstra堆优化版及优先队列杂谈

    其实堆优化版极其的简单,只要知道之前的Dijkstra怎么做,那么堆优化版就完全没有问题了. 在做之前,我们要先学会优先队列,来完成堆的任务,下面盘点了几种堆的表示方式. priority_queue ...

  3. 关于springboot配置文件的另类读取方法

    一.背景故事   前阵子我接手了公司另外一个同事手里的项目,项目是用的springboot 写的,但是比较坑的就是这个项目写的有点不伦不类.虽然是用的springboot,但由于他是拿了一堆代码拼凑起 ...

  4. Yii2.X 如何避开pathinfo不能处理中文名开头的bug

    /** * @return string original file base name */ public function getBaseName() { // https://github.co ...

  5. OpenFaceswap 入门教程(2):软件使用篇!

    安装完OpenFaceswap之后,是不是就迫不及待的想要“见证奇迹”了呢? 都说磨刀不误砍柴工.开始之前请先做一个准备.然后大致了解一下换脸的过程 换脸基本步骤是: 把视频切成很多图片 把图片中的人 ...

  6. 内容提供器(Content Provider)

    一个跟数据库很相似的用于与其他程序传递信息的组件,用的也是数据库的CRUD操作 相关权限 注册内容提供者以及权限 <provider android:name=".ContentRes ...

  7. MapReduce实现单词统计

     开发工具:IDEA mapreduce实现思路: Map阶段: a) 从HDFS的源数据文件中逐行读取数据 b) 将每一行数据切分出单词 c) 为每一个单词构造一个键值对(单词,1) d) 将键值对 ...

  8. 云计算之路-阿里云上:用上了开放缓存服务OCS

    你知道在我们使用的云服务器中哪台最贵吗?跑memcached的缓存服务器(12G内存).你知道保证网站访问速度的功臣之一是谁吗?跑memcached的缓存服务器. 用云服务器这么高贵的内存跑memca ...

  9. Python框架之Django学习笔记(五)

    第一个Django网页小结 进来的请求转入/hello/. Django通过在ROOT_URLCONF配置来决定根URLconf. Django在URLconf中的所有URL模式中,查找第一个匹配/h ...

  10. Pycharm注册码最新版本2019激活码activation code + 最实用的激活方法(亲测有效)

    同时适用于jetbrains全系列可用例:IDEA.WebStorm.phpstor 由于想趁着这个寒假多学习下python,所以这些实用小技巧分享给大家,拿走不谢~ 这里为大家提供了两种最实用的激活 ...