MySQL · 性能优化 · MySQL常见SQL错误用法
1. LIMIT 语句
分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
ORDER BY create_time
LIMIT 1000, 10;
好吧,可能90%以上的DBA解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?
要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL重新设计如下:
SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
AND create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;
在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。
2. 隐式转换
SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:
mysql> explain extended SELECT *
> FROM my_balance b
> WHERE b.bpn = 14000000123
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
其中字段bpn的定义为varchar(20),MySQL的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。
上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。
3. 关联更新、删除
虽然MySQL5.6引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成JOIN。
比如下面UPDATE语句,MySQL实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。
UPDATE operation o
SET status = 'applying'
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t);
执行计划:
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
确定从语义上查询条件可以直接下推后,重写如下:
SELECT target,
Count(*)
FROM operation
WHERE target = 'rm-xxxx'
GROUP BY target
执行计划变为:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
7. 提前缩小范围
先上初始SQL语句:
SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
由于最后WHERE条件以及排序均针对最左主表,因此可以先对my_order排序提前缩小数据量再做左连接。SQL重写后如下,执行时间缩小为1毫秒左右。
SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15
再检查执行计划:子查询物化后(select_type=DERIVED)参与JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及LIMIT 子句后,实际执行时间变得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
8. 中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。
其实对于子查询 c,左连接最后结果集只关心能和主表resourceid能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。
SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用WITH语句再次重写:
WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
9、总结
数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。
上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。
MySQL · 性能优化 · MySQL常见SQL错误用法的更多相关文章
- MySQL · 性能优化 · MySQL常见SQL错误用法(转自-阿里云云栖社区)
作者:阿里云云栖社区链接:https://zhuanlan.zhihu.com/p/26043916来源:知乎著作权归作者所有,转载请联系作者获得授权. 前言 MySQL在2016年仍然保持强劲的数据 ...
- MySQL性能优化(四):SQL优化
原文:MySQL性能优化(四):SQL优化 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/ ...
- Mysql性能优化一:SQL语句性能优化
这里总结了52条对sql的查询优化,下面详细来看看,希望能帮助到你 1, 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2,应尽量避免在 w ...
- 8种常见SQL错误用法,你中招了吗?
作者:db匠 来源:https://yq.aliyun.com/articles/72501 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句, ...
- 8 种常见 SQL 错误用法
点击上方"开源Linux",选择"设为星标"回复"学习"获取独家整理的学习资料! 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常 ...
- MySQL - 性能优化 & MySQL常见SQL错误用法(转载)
1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如: , ; 一般DBA想到的办法是在type, name, create_time字段上加组合索引.这样条件排序 ...
- 【MySQL性能优化】MySQL常见SQL错误用法
https://yq.aliyun.com/articles/72501?utm_content=m_14899
- 8种常见的SQL错误用法
常见SQL错误用法 1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字 ...
- MySQL 性能优化
内容简介:这是一篇关于mysql 性能,mysql性能优化,mysql 性能优化的文章.网上有不少mysql 性能优化方案,不过,mysql的优化同sql server相比,更为麻烦与负责,同样的设置 ...
随机推荐
- css常用总结
1.固定一个层在页面的位置,不受滚动条影响, 属性position:fixed,如: .tbar{ height:200px;width:60px;background-color:#666;posi ...
- AAC包增加ADTS头Without MediaCodec
AAC原始码流无法直接播放,一般需要封装为ADTS格式才能再次使用,本博主在android中用MediaCodec编码得到的AAC就是raw格式,为了保存为.aac格式,需要增加adts头,这样就可以 ...
- 人生苦短之Python发邮件
#coding=utf-8 import smtplib from email.mime.base import MIMEBase from email.mime.image import MIMEI ...
- CentOS系统文件和目录管理相关的一些重要命令
我们都知道,在Linux系统中,基本上任何我们需要做的事都可以通过输入命令来完成,所以在Linux系统中命令非常的多,我们不可能也没必要记住所有的这些命令,但是对于一些常用的命令我们还是必须要对其了如 ...
- x264 --fullhelp
>x264 --fullhelp x264 core: Syntax: x264 [options] -o outfile infile Infile can be raw (in which ...
- php函数的参数引用变量
在php.ini中将allow_call_time_pass_reference的值改为'on'.
- Python: PS 滤镜--USM 锐化
本文用 Python 实现 PS 滤镜中的 USM 锐化效果,具体的算法原理和效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/detail ...
- 如何使用Psyco为你的Python程序提速
psyco加速Python执行速度的方法:要求: 版本对照:File name Python versions Well-tested withpsyco-x.y-win32-py ...
- c++11 右值引用和移动语义
什么是左值.右值 最常见的误解: 等号左边的就是左值,等号右边的就是右值 左值和右值都是针对表达式而言的, 左值是指表达式结束后依然存在的持久对象 右值是指表达式结束时就不再存在的临时对象区分: 能对 ...
- Dubbo原理与框架设计
Dubbo是常用的开源服务治理型RPC框架,在之前osgi框架下不同bundle之间的方法调用时用到过.其工作原理和框架设计值得开源技术爱好者学习和研究. 一.Dubbo的工作原理 调用关系说明 服务 ...