UVA 11383 - Golden Tiger Claw

题目链接

题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列之和的和最小

思路:A二分图完美匹配的扩展,行列建二分图,权值为矩阵对应位置的值,做一次KM算法后。全部顶标之和就是最小的

代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int MAXNODE = 505; typedef int Type;
const Type INF = 0x3f3f3f3f; struct KM {
int n;
Type g[MAXNODE][MAXNODE];
Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE];
int left[MAXNODE];
bool S[MAXNODE], T[MAXNODE]; void init(int n) {
this->n = n;
} void add_Edge(int u, int v, Type val) {
g[u][v] = val;
} bool dfs(int i) {
S[i] = true;
for (int j = 0; j < n; j++) {
if (T[j]) continue;
Type tmp = Lx[i] + Ly[j] - g[i][j];
if (!tmp) {
T[j] = true;
if (left[j] == -1 || dfs(left[j])) {
left[j] = i;
return true;
}
} else slack[j] = min(slack[j], tmp);
}
return false;
} void update() {
Type a = INF;
for (int i = 0; i < n; i++)
if (!T[i]) a = min(a, slack[i]);
for (int i = 0; i < n; i++) {
if (S[i]) Lx[i] -= a;
if (T[i]) Ly[i] += a;
}
} void km() {
for (int i = 0; i < n; i++) {
left[i] = -1;
Lx[i] = -INF; Ly[i] = 0;
for (int j = 0; j < n; j++)
Lx[i] = max(Lx[i], g[i][j]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) slack[j] = INF;
while (1) {
for (int j = 0; j < n; j++) S[j] = T[j] = false;
if (dfs(i)) break;
else update();
}
}
}
} gao; int n; int main() {
while (~scanf("%d", &n)) {
gao.init(n);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
scanf("%d", &gao.g[i][j]);
}
gao.km();
int ans = 0;
for (int i = 0; i < n; i++) {
printf("%d%c", gao.Lx[i], i == n - 1 ? '\n' : ' ');
ans += gao.Lx[i];
}
for (int i = 0; i < n; i++) {
printf("%d%c", gao.Ly[i], i == n - 1 ? '\n' : ' ');
ans += gao.Ly[i];
}
printf("%d\n", ans);
}
return 0;
}

UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)的更多相关文章

  1. UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)

    题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...

  2. Uva - 11383 - Golden Tiger Claw

    题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...

  3. UVA 11383 Golden Tiger Claw 金虎爪(KM算法)

    题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...

  4. UVA 11383 Golden Tiger Claw 题解

    题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...

  5. 【KM算法】UVA 11383 Golden Tiger Claw

    题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...

  6. 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...

  7. UVA 1411 - Ants(二分图完美匹配)

    UVA 1411 - Ants 题目链接 题意:给定一些黑点白点,要求一个黑点连接一个白点,而且全部线段都不相交 思路:二分图完美匹配,权值存负的欧几里得距离,这种话,相交肯定比不相交权值小,所以做一 ...

  8. UVA 10888 - Warehouse(二分图完美匹配)

    UVA 10888 - Warehouse option=com_onlinejudge&Itemid=8&page=show_problem&category=562& ...

  9. Golden Tiger Claw(二分图)

    Golden Tiger Claw 题意 找到和最小的两个序列a,b满足对于任意i,j有a[i]+b[j]>=c[i][j](矩阵c给出). solution 裸的二分图就水过了-- #incl ...

随机推荐

  1. netty百万连接跟踪记录

    0. 启动客户端和服务端 # 测试环境: centos7 jdk8 2核16G# 服务端启动nohup java -Xmx8192m -Xms4096m -XX:+UseG1GC -XX:Parall ...

  2. BZOJ 2969 期望

    思路: 我们可以分开算每个格子自己的期望啊... 期望可以累加的 那就把这个大格子 分成 9个部分 分别算好了... //By SiriusRen #include <cmath> #in ...

  3. POJ 2230 DFS

    题意: Bessie 最近做了农场看守,他每天晚上的工作就是巡视农场并且保证没有坏人破坏农场.从谷仓出发去巡视,并且最终回到谷仓. Bessie 视力不是很好,不能像其他农场的看守一样,对农场的每一条 ...

  4. C - Xenia and Ringroad

    Problem description Xenia lives in a city that has n houses built along the main ringroad. The ringr ...

  5. 在linux系统中,使用tomcat的shutdown.sh脚本停止应用,但是进程还在的解决办法

    基本原理为启动tomcat时记录启动tomcat的进程id(pid),关闭时强制杀死该进程 第一步 :vi 修改tomcat下bin/catalina.sh文件,增加几行脚本,主要是记录tomcat的 ...

  6. vs2008bin下Debug bll Release文件 obj下的Debug bll Release文件区别

    Bin目录用来存放编译的结果,bin是二进制binrary的英文缩写,因为最初C编译的程序文件都是二进制文件,它有Debug和Release两个版本,分别对应的文件夹为bin/Debug和bin/Re ...

  7. Web Api跨域登录问题

    最近项目第一次尝试使用web api,照搬了一般mvc的Forms登录方式,在和前端对接的时候出现一个问题: 前端使用ajax调用登录接口完成登录后,再调用别的接口,被判断为未登录. 如果直接在浏览器 ...

  8. Prism.Interactivity 之 PopupWindowAction 用法简记

    PopupWindow通过InteractionRequestTrigger(EventTrigger的派生类)侦听目标对象(InteractionRequest<T>类型)的Raised ...

  9. Tomcat 程序无问题的情况下页面打开变慢的原因

    看看这写日志的频率就知道我有多闲了.. 前言: 其实关于tomcat,遇到过很多关于“慢”的问题,比如启动慢,比如页面打开慢, 以前太忙也太懒,不愿意花时间分析原因,现在终于肯静下来找原因 环境是ec ...

  10. Mybatis与Hibernate的对比

    Mybatis与Hibernate的对比 工作中,用了一段Hibernate与Mybatis,也在此简单的聊上几句,希望对大家有帮助. Mybatis与Hibernate不同,它不完全是一个ORM框架 ...