Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. mysql 年龄计算(根据生日字段)

    mysql 年龄计算(根据生日字段) year( from_days( datediff( now( ), birthdate))) //获取年龄 now() 当前时间,精确到秒 datediff(b ...

  2. create-react-app 中设置反向代理、项目打包资源引入路径设置及 map 文件

    1.配置反向代理 (1)porxy 配置一个代理 修改package.json文件 "proxy":"http://teng.com/website/web", ...

  3. Android开发笔记(12)——ListView & Adapter

    转载请注明:http://www.cnblogs.com/igoslly/p/6947225.html 下一章是关于ListFragment的内容,首先先介绍ListView的相关配置,理解ListF ...

  4. 【Linux】磁盘分区

    我们在Linux操作过程中,可能会遇到磁盘分区的问题.这篇文章是对/dev/sdb 这块磁盘进行分区. linux分区不同于windows,linux下硬盘设备名为(IDE硬盘为hdx(x为从a—d) ...

  5. MatLab之HDL coder

    1 Workflow The workflow for applying HDL code generation to the hardware design process requires the ...

  6. rev

    功能说明:反向输出文件内容.   字符串反转   文本反转

  7. .Net Core 中X509Certificate2 私钥保存为 pem 的方法

    在自己签发CA证书和颁发X509证书时,私钥通过下面的方法保存为PEM 相关代码可以已经提交在了 https://github.com/q2g/q2g-helper-pem-nuget/pull/13 ...

  8. Firebug全了解

    Firebug是firefox下的一个扩展,能够调试所有网站语言,如Html,Css等,但FireBug最吸引人的就是javascript调试功能,使用起来非常方便,而且在各种浏览器下都能使用(IE, ...

  9. PAT_A1153#Decode Registration Card of PAT

    Source: PAT A1153 Decode Registration Card of PAT (25 分) Description: A registration card number of ...

  10. 移动端 配置rem

    <script> function Rem() { var docEl = document.documentElement, oSize = docEl.clientWidth / 7. ...