Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. Angular 显示英雄列表

    在本页面,你将扩展<英雄指南>应用,让它显示一个英雄列表, 并允许用户选择一个英雄,查看该英雄的详细信息. 创建模拟(mock)英雄数据 你需要一些英雄数据以供显示. 最终,你会从远端的数 ...

  2. iTex导出PDF

    iText导出PDF,所需jar包如下: itext-asian-5.2.0.jar 支持导出中文的jar包 itextpdf-5.5.9.jar PDF核心jar包 bcprov-jdk15on-1 ...

  3. objc_setAssociatedObject获取cell上button对应所在的行

    #import <UIKit/UIKit.h> @interface TestCell : UITableViewCell @property (weak, nonatomic) IBOu ...

  4. Laravel5.1学习笔记5 请求

    HTTP 请求 #取得请求实例 #基本的请求信息 #PSR-7 请求 #取出输入数据 #旧的输入 #Cookies #文件 #取得请求实例(此部分文档5.1完全重写,注意) 要通过依赖注入获取当前HT ...

  5. javascript中执行环境和作用域(js高程)

    执行环境(execution context,为简单起见,有时也成为“环境”)是javascript中最为重要的一个概念.执行环境定义了变量或函数有权访问的其他数据,决定了它们各自的行为.每个执行环境 ...

  6. Maven项目pom.xml配置详解

    maven项目pom.xml文件配置详解,需要时可以用作参考: <project xmlns="http://maven.apache.org/POM/4.0.0" xmln ...

  7. Electron结合React开发环境遇到的问题

    链接 将create-react-app与electron集成在了一个项目中.但是在React中无法使用electron 当在React中使用require('electron')时就会报TypeEr ...

  8. 3、scala函数入门

    1.定义函数 2.在代码块中定义函数体 3.递归函数与返回类型 4.默认参数 5.带名参数 6.变长参数 7.使用序列调用变长参数  8.过程 9.lazy值              10.异常 1 ...

  9. luoguP4719 【模板】动态 DP 线段树+树链剖分+矩阵乘法+动态DP

    题目描述 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y,表示修改点x的权值为y. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 输入输出格式 输入格式: 第一行,n,m分 ...

  10. vue点击实现 路由的跳转

    点击按钮实现路由的跳转 <div @click="gotoMenu">按钮</div> 实现跳转 methods: { gotoMenu(){ //跳转到上 ...