Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. Redis的事务讲解

    1. Redis事务的概念 是什么: 可以一次执行多个命令,本质是一组命令的集合.一个事务中的所有命令都会序列化,按顺序串行化的执行而不会被其他命令插入 能干嘛:一个队列中,一次性.顺序性.排他性的执 ...

  2. T - Amusing Joke(map)

    Problem description So, the New Year holidays are over. Santa Claus and his colleagues can take a re ...

  3. SQLServer2008 关于数值字段列的累计

    create table #temp20110610(     id int identity(1,1),     date varchar(8),     qty float) insert int ...

  4. jQuery学习笔记之jQuery的Ajax(3)

    jQuery学习笔记之jQuery的Ajax(3) 6.jQuery的Ajax插件 源码地址: https://github.com/iyun/jQueryDemo.git ------------- ...

  5. Android_方向传感器

    Android方向传感器小案例,主要代码如下: package com.hb.direction; import android.app.Activity; import android.conten ...

  6. 九九乘法表(for循环)

    九九乘法表:<br /><script>for(var i=0;i<10;i++){ for(var j=1;j<=i;j++) { var a=j*i docum ...

  7. Java_Web之状态管理

    回顾及作业点评: (1)JSP如何处理客户端的请求? 使用response对象处理响应 (2)请描述转发与重定向有何区别? 转发是在服务器端发挥作用,通过forward方法将提交信息在多个页面间进行传 ...

  8. OpenCV: kalman滤波的代码段

    序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定. 代码如下: CvPoint Wishchin ...

  9. [Intermediate Algorithm] - Drop it

    题目 队友该卖就卖,千万别舍不得. 当你的队伍被敌人包围时,你选择拯救谁.抛弃谁非常重要,如果选择错误就会造成团灭. 如果是AD或AP,优先拯救. 因为AD和AP是队伍输出的核心. 其次应该拯救打野. ...

  10. 测试 Zoundry Raven

    安装很方便,看看发布的内容是否好用 但发现从博客上取下来的内容是有问题的,不能正常打开