Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters



Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update



Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold

2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold

3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation




Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse

templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that

trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of

initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background
clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF



Dataset





相应站点





Online Object Tracking: A Benchmark 论文笔记的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. [JZOJ3809]设备塔

    其实我并没有JZOJ的号...但既然dalao说了是JZOJ上的题,那就是了吧...... 为了封印辉之环,古代塞姆利亚大陆的人民在异空间中建造了一座设备塔. 简单的说,这座设备塔是一个漂浮在异空间中 ...

  2. HDU 4901 DP

    我觉得这个DP挺难的...然而这只是lydrainbowcat学长幻灯片上的第一题-- 明天考试要GG. 题意: 给你一个序列,让你选出两个集合S和T.保证S里的数都在T里的数的左边.求一共有多少个集 ...

  3. 数据库操作通用函数,增强可重复利用性能C#,asp.net.sql2005

    using System;using System.Data;using System.Data.SqlClient; namespace com.hua..li{ /// <summary&g ...

  4. SQlserver 当输入参数为可选条件

    以前很懒,都是用拼接字符串的方式,加上if 语句,根据输入参数是否为空来判断是否需要在where 后加上对应字段的条件限制 但是拼接字符串很烦,又总是被转义符搞得很烦  '''' 所以想了其他办法 分 ...

  5. ios 指纹识别解锁

    :添加LocalAuthentication.framework框架 :实现过程 #import "ViewController.h" #import <LocalAuthe ...

  6. Leetcode0005--Longest Palindromic Substring 最长回文串

    [转载请注明]http://www.cnblogs.com/igoslly/p/8726771.html 来看一下题目: Given a string s, find the longest pali ...

  7. 推荐系统:MovivLens20M数据集解析

    MovieLens 是历史最悠久的推荐系统.它由美国 Minnesota 大学计算机科学与工程学院的 GroupLens 项目组创办,是一个非商业性质的.以研究为目的的实验性站点.MovieLens ...

  8. Linux基础:seq命令总结

    本文只总结一些常用的用法,更详细的说明见man seq和 seq --help. seq命令 seq命令用于输出数字序列. 语法格式 Usage: seq [OPTION]... LAST or: s ...

  9. UDP、线程、mutex锁(day15)

    一.基于UDP的网络编程模型 服务器端 .创建socket. .将fd和服务器的ip地址和端口号绑定 .recvfrom阻塞等待接收客户端数据 .业务处理 .响应客户端 客户端: .创建socket ...

  10. python-flask-2 安装及设定 flask

    https://linoxide.com/linux-how-to/install-flask-python-ubuntu/ 1. prerequisites > create a new us ...