51nod 1301 集合异或和(DP)
因为当\(A<B\)时,会存在在二进制下的一位,满足这一位B的这一位是\(1\),\(A\)的这一位是\(0\).
我们枚举最大的这一位。设为\(x\)吧。
设计状态。\(dp[i][j][1/0]\)代表考虑了前i个数,异或和为j的情况下\(B\)的第\(x\)位为\(1\)或\(0\)有多少种情况。
然后随便转移一下,再随便统计答案一下就好了。
如果不知道如何转移,就看代码吧。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int mod=1e9+7;
int n,m,mx,dp[2100][2100][2],ans;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read();m=read();
mx=max(n,m);
int now=0;
for(int i=1;i<=mx;i<<=1){
now++;
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
for(int j=1;j<=mx;j++){
for(int k=0;k<=2047;k++){
if(j<=m){
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k^j][0^((j&i)>>(now-1))])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k^j][1^((j&i)>>(now-1))])%mod;
}
if(j<=n){
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k^j][0])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k^j][1])%mod;
}
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k][0])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k][1])%mod;
}
}
for(int j=i;j<=min(i*2-1,2047);j++)ans=(ans+dp[mx][j][1])%mod;
}
printf("%d",ans);
return 0;
}
51nod 1301 集合异或和(DP)的更多相关文章
- [51Nod 1301] 集合异或和 (dp)
传送门 Solution 一道比较好的dp题 想了半天组合数QAQ 首先要知道的是 A<B一定是B有一位是1且A的这位是0且前面都相等 那么肯定是要枚举这一位在哪里然后求出方案数 方案数考虑类似 ...
- 51nod 1301 集合异或和——异或dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301 好题!看了TJ才会. 因为是不可重集合,所以当然有前 i 个 ...
- 51Nod 1301 集合异或和 —— 异或DP
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301 参考博客:https://blog.csdn.net/qq_ ...
- [51nod] 1301 集合异或和
考虑不限制xor{Y}>xor{X} 考虑n=m的情况,每个数i∈[1,n]可以被分配到X集合或Y集合,或不分配 设f[S]表示{X} xor {Y} == S的方案数 有f[S]+=2*f[S ...
- 51nod 1293 球与切换器 | DP
51nod 1293 球与切换器 | DP 题面 有N行M列的正方形盒子.每个盒子有三种状态0, -1, +1.球从盒子上边或左边进入盒子,从下边或右边离开盒子.规则: 如果盒子的模式是-1,则进入它 ...
- 51nod 1412 AVL树的种类(dp)
题目链接:51nod 1412 AVL树的种类 开始做的时候把深度开得过小了结果一直WA,是我天真了.. #include<cstdio> #include<cstring> ...
- 51nod 1051 最大子矩阵和(dp)
题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...
- hihocoder #1301 : 筑地市场 数位dp+二分
题目链接: http://hihocoder.com/problemset/problem/1301?sid=804672 题解: 二分答案,每次判断用数位dp做. #include<iostr ...
- 51Nod 1352 集合计数(扩展欧几里德)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352 题目大意: 给出N个固定集合{1,N},{2,N-1} ...
随机推荐
- useradd常用参数介绍
-c :新账号passwd档的说明栏 -d :新账号每次登录时所使用的home_dir,预设值为default_home内login名称,并当成登录时目录名称 -e :*账号终止日期,日期的指定格式为 ...
- Linux 中常用的基础命令二
1.Linux文件分层结构 FHS:Linux有一个组织叫LSB定义的Linux发行版基础目录名称命名法则及功用规定,这种标准叫FHS文件系统层级标准./bin 存放可执行的二进制程序,管理员和 ...
- FFMpeg 常用命令格式转换,视频合成
FFmpeg都是命令行的,用起来肯定不方便.但是,这对技术宅应该不成问题.下面,我就罗列一些比较实用的使用方法吧. FFmpeg的下载与安装 FFmpeg是开源的.但我们不必去下载它的源代码.下载已经 ...
- 找不到javax.servlet.http.HttpServletResponse和javax.servlet.http.HttpServletRequest
导了个项目进eclipse,发现很多文件都报了错,错误提示是没有引入javax.servlet.http.HttpServletRequest和javax.servlet.http.HttpServl ...
- 《黑白团团队》第八次团队作业:Alpha冲刺 第二天
项目 内容 作业课程地址 任课教师首页链接 作业要求 团队项目 填写团队名称 黑白团团队 填写具体目标 认真负责,完成项目 团队项目Github仓库地址链接. 第二天 日期:2019/6/16 成员 ...
- 【CodeForces 987C】Three displays
[链接] 我是链接,点我呀:) [题意] [题解] 动态规划 设dp[i][j]表示前i个数字,选了j个的最小花费. dp[i][j] = min(dp[k][j-1]+b[i]);//其中a[i]& ...
- struts配置
创建struts2的应用,首先应如前面所示要搭建好环境.jar包的导入和web.xml配置这里不在写出来. 如上所示,struts2中是采用<package>元素来管理Action的,包 ...
- [jQuery]文本框text变化事件
$("#key").live("keyup",function(){ })
- Hadoop使用Java进行文件修改删除操作
Hadoop使用Java进行文件修改删除操作 学习了:http://blog.csdn.net/menghuannvxia/article/details/44651061 学习了:http://bl ...
- 使用Dropzone上传图片及回显演示样例
一.图片上传所涉及到的问题 1.HTML页面中引入这么一段代码 <div class="row"> <div class="col-md-12" ...